

mi (

35+40 38+15 25+30 38+25 75+25 75+25 35+38 5 5

e İ,

(6

num CE

DOWA-DO EKSTREMALNYCH LO STOSOWANIA W BETONIE ANYM ORAZ NIEZARYSOWANYM BEZ STYREMU

3-

AUCHOR FOR USE IN CRACKED AUDUNCRACKED CONCRETE NOTY-FOR EXTREME LOADS STYREME FREE

MOUNT

C1|C2

S CE

MECHANICAL ANCHORS CONCRETE SCREWS CHEMICAL ANCHORS

E

.0

Production plant no. 1 - total area of 20,000 m²

OWN PRODUCTION OF FASTENER TECHNOLOGIES

Production of Klimas Wkręt-met fastening technologies is held in 4 modern facilities, located in Kuźnica Kiedrzyńska and Wanaty near Częstochowa. The Company has launched production in its third facility in Wanaty which, with use of state-of-the-art technologies and applications, implements the assumptions of the Industry 4.0. programme.

KLIMAS FASTENER TECHNOLOGIES

ADVANCED MACHINE PARK ROLLING MILL AND STAMPING PRESS DEPARTMENT

- Top-quality raw-material from European steelworks.
- $\cdot \,$ Various steel grades.
- Own R&D department.
- Extensive machine park.
- · Hardening (heat treatment).

- · Application of protective coats.
- · Possibility of painting heads and washers to RAL colours.
- · Quality control at each production stage.
- · Polish and European technical assessments.

ADVANCED MACHINE PARK ROLLING MILL AND STAMPING PRESS DEPARTMENT

<u>KLIMAS</u>

FASTENER TECHNOLOGIES

OWN PRODUCTION OF FASTENER TECHNOLOGIES

PRODUCTS DEVELOPED BY R&D WIDE RANGE OF SIZES TOP QUALITY

ADVANCED MACHINE PARK INJECTION MOULDER DEPARTMENT

- · Highest quality production materials.
- $\cdot\,$ Appropriate flexibility is guaranteed by conditioning of polyamide products.
- \cdot 0wn production using the highest quality hybrid injection moulding machines with robots.
- · Automatic packing process: from carton/blister to pallet wrapping.

ADVANCED MACHINE PARK INJECTION MOULDER DEPARTMENT

OWN PRODUCTION OF FASTENER TECHNOLOGIES

KLIMAS

FASTENER TECHNOLOGIES

KLIMAS FASTENER TECHNOLOGIES

ADVANCED MACHINE PARK HARDENING PLANT DEPARTMENT

- · Advanced machine park including 7 hardening furnaces.
- $\cdot\,$ 2 modern furnaces for hardening of screws over 200 mm long while keeping high quality of parameters no curvature.
- · Automated hardening line high capacity.

ADVANCED MACHINE PARK HARDENING PLANT DEPARTMENT

CUSTOM COATING

SUPER

SQ CERAMI

White Zinc

Zinc coating guarantee of quality and high level of anti-corrosion protection.

Yellow Zinc

Zinc coating guarantee of quality and high level of anti-corrosion protection.

SQ Ceramic

Very high level of anti-corrosion protection (several times higher than the traditional galvanization).

Advanced machine park: **ZN yellow without CR6+.** Advanced processing line for SQ Ceramic coating. Automatic passivation and top coat line. State-of-the-art robots and baths for sealing of coating.

ADVANCED PROCESSING LINE – HARDENING PLANT AND GALVANIZING LINE DEPARTMENT

PRECISION HIGH QUALITY HIGH PRODUCTION CAPACITY

KLIMAS

FASTENER TECHNOLOGIES

HARDENING FURNACES

KLIMAS FASTENER TECHNOLOGIES

ADVANCED MACHINE PARK RESEARCH & DEVELOPMENT DEPARTMENT

1. Hardness and micro Vickers hardness testing. | 2. Assembly and load-resistance tests for all substrate categories according to ETAG. | 3. Testing thickness of corrosion protection plating using X-ray fluorescence spectroscopy tester - Fischeroscope X-RAY XDL. Analysis of chemical composition of alloy steels. | 4. Preparation of metallographic micro-sections - metallographic tests. | 5. Preparation of metallographic micro-sections - metallographic tests. | 6. Torque value testing | 7. Determination of tensile strength for wire and finished goods. 8. Metallographic tests - control of thermal and chemical treatment process, hardness, structure. | 9. Testing of corrosion resistance in salt spray/cyclic chamber. | 10. Accelerated ageing of paint coats in UV chamber. | 11. Testing of loading resistance of fasteners - characteristic pull-out strength.

ADVANCED MACHINE PARK RESEARCH & DEVELOPMENT DEPARTMENT

APPROVALS CERTIFICATES AWARDS

KLIMAS

FASTENER TECHNOLOGIES

EUROPEAN APPROVALS

KLIMAS FASTENER TECHNOLOGIES

COMPREHENSIVE SOLUTIONS PACKING DEPARTMENT AND HIGH STORAGE WAREHOUSE

- $\cdot\,$ Automated picking and packing processes.
- Most popular packaging: unit packages, bags, blisters.
- High performance

HIGH STORAGE WAREHOUSE

OUR ASSETS Klimas wkręt-met – why it is worth?

Certified products - 21 European Technical Approvals and 21 Polish Technical Approvals

Our products regularly receive Polish and European technical approvals what proves their reliability. Due to these documents Polish and foreign Clients obtain a guarantee of the highest quality of Klimas Wkręt-met brand products.

Jζ	

Technical advisory

Caring about the Client's comfort, we ensure the assistance of technical advisors in the selection of our products. Persons interested in our offer may always count on the professional support in the selection of fastening systems adequate to the needs of the Client and requirements of the specific construction.

Partnership

Our company is set on continuous improvement of its production control processes at each stage of manufacture. We wish to provide our customers with services of the highest possible standard.

Our company offers products that find application in many different industries

Specialised sections of products reach many selected groups of customers who value and appreciate their reliability. Klimas Wkręt-met undertakes cooperation with companies from various industries using products marked with our brand. Thus, for example, thanks to cooperation with window producers we deliver them high quality products used by them in the production process and in return we receive the knowledge necessary for enhancing our products and developing brand new innovative products by Klimas Wkręt-met that perfectly fit the needs of a given industry or field.

Integrated Management System

Quality Management System according to PN-EN ISO 9001. OH&S Management System according to PN-EN ISO 45001. Energy Management System according to PN-EN ISO 50001.

> Wkręt-met KLIMAS

KLIMAS

FASTENER TECHNOLOGIES

KLIMAS FASTENER TECHNOLOGIES

PRIZES AND AWARDS

Budowlana Marka Roku 2021

For the 9th time, Klimas Wkręt-met won the most prestigious title on the market of building materials in Poland.

Forbes Diamond Award 2021

Klimas Wkręt-met has been awarded with Forbes Diamond 2021. According to the ranking compiled by Forbes Magazine and Bisnode Polska, the producer of fastening techniques dynamically increased its sales value in the last three years.

Statuettes of the Polish Windows and Doors Association

The Polish Windows and Doors Association awarded Klimas Wkręt-met for its achievements in the woodwork industry. The Association also awarded the prestigious title of Honorary Member to the founder and President of the company - Wojciech Klimas.

Construction Company of the Year

The editors and the Program Council of the "Builder" magazine once more awarded Klimas Wkręt-met the title of Construction Company of the Year. The distinction is awarded to companies characterized by dynamic development and strong market position. This title aims at selecting the most outstanding companies in the country, their promotion and popularization of good business practices.

Creator of Construction 2020

For 9 years now, the Polish Chamber of Civil Engineers has been distinguishing individuals and companies that shape the construction market with their activities, introduce new technologies and innovative solutions, as well as take care of the quality of products and services offered and can be proud of their CSR activities. The title of the Creator of Construction 2019 went to President Wojciech Klimas, as well as to the entire Klimas Wkręt-met company.

ASSOCIATIONS

DAFA - Flat Roof and Fasade Contractors Association

The organization undertakes activities aimed at unification of executive standards and commercial conditions, creation of partnership relations, initiation of activities influencing the development of the industry and integration of environments that operate in the area of design and construction of flat roofs and facades.

POiD - Polish Windows and Doors Association

The organization unites domestic manufacturers, suppliers and distributors related to woodwork. The Association aims to combat all forms of unfair competition, set professional standards and carry out technical analyses, among other things

STOWARZYSZENIE

PSD - Polish Roofers' Association

The Polish Roofers' Association unites professionals from the roofing industry: contractors, experts, designers, suppliers and manufacturers of construction materials for roofing.

EDG - Energy Efficient Finished Houses Association

The EDG Association is an organization associating manufacturers of prefabricated buildings and producers of materials dedicated to this type of construction in Poland. The organization places great emphasis on increasing awareness and taking care of the quality and reliability of services.

SSO - Association for External Thermal Insulation Composite Systems - ETICS

Membership in the Association for Thermal Insulation composite systems allows us to actively contribute to the development of energy efficient and sustainable construction industry. The Association unites the leading manufacturers of thermal insulation composite systems in Poland.

SDD - Wooden House Association

One of product categories carried by Klimas Wkręt-met are fasteners for wooden constructions that work great in the wooden construction industry. That is why, since 2014, the company has been a member of the Wooden House Association which promotes wood as an environmentally friendly material and gathers all stakeholders interested in the subject of wooden houses. A significant goal of the organization is to take up activities aimed at improving the quality of houses made of wood.

BCC - Business Centre Club

The Klimas Wkręt-met company has been awarded the European Medal. The award was granted by the largest organization of individual employers in the country - Business Center Club. Awards were granted by the Business Center Club on June 12th this year at Warsaw headquarter placed in the Lubomirski Palace. It was the final of the 30th edition of the event. Among the guests were European Medal winners, honorary winners, Chancellors of the BCC Regional Lodge and the representatives of the European Economic and Social Committee.

INDEX

INDEX

Basic informations	20
Products overview - selection tables	30

WEDGE ANCHORS

LE-ZN		Wedge anchor (Galvanized)	34
LE-ZNA4		Wedge anchor (Galvanized + Stainless steel A4)	38
LE-DA4		Wedge anchor (SQ Ceramic + Stainless steel A4)	42
LE-A4		Wedge anchor (Stainless steel A4)	46
LM	(—)	Single sleeve steel machine anchor	50
LTP		Double sleeve anchor	50
LSI		Single sleeve steel anchor with flange nut	50
LHP		Sleeve anchor with straight hook	50
LHO	$\bigcirc \mathfrak{q} = $	Sleeve anchor with eye bolt	51
LHS		Sleeve anchor with round hook	51
LHH	$\bigcirc \mathfrak{q} = $	Sleeve anchor with pig tail hook	51
TSW		Steel drop-in anchor	51
OTSW		Drop-in anchor setting tool	51
KRM		Brass drop-in anchor	51

CONCRETE SCREWS

WDBLS	 Concrete screw with hex washer head	
WDBLP	 Concrete screw with countersunk head, TX	
WDBLG	Concrete screw with pan head, TX	
WDBGZ	Concrete screw with external metric thread	
WDBGW	Concrete screw with internal metric thread	

INDEX

METAL ANCHORS

SMM		Metal hammer drive anchor	
KRW		Hammer-in expanding metal anchor	
KMG	<u>*************************************</u>	Hammer-in anchor for AAC substrates	
LO		Metal frame anchor	
WHO		Frame screw with flat head	82
WHOW		Frame screw with cylindrical head	83

INDEX

CHEMICAL ANCHORS

WCF-E3-585	MOUNT EVEREST - Epoxy injection anchor - FOR HEAVY LOADS (C1/C2) WCF-E3-585 - Application temperatures: 5°C to 40°C, content: 585 ml	84
WCF-XS-410 WCF-XS-E-410 WCF-XS-C-410	NANDA KOT - Hybrid injection anchors - FOR HEAVY AND MEDIUM LOADS (C1/C2) WCF-XS-410 - Application temperatures: 5°C to 30°C, content: 410 ml WCF-XS-E-410 - Application temperatures: 15°C to 40°C, content: 410 ml WCF-XS-C-410 - Application temperatures: 0°C to 20°C, content: 410 ml	88
WCF-EASF-410 WCF-EASF-E-410 WCF-EASF-C-410	MAKALU - Epoxy Acrylate injection anchors - FOR HEAVY AND MEDIUM LOADS (C1) WCF-EASF-410 - Application temperatures: 5°C to 30°C, content: 410 ml WCF-EASF-E-410 - Application temperatures: 15°C to 40°C, content: 410 ml WCF-EASF-C-410 - Application temperatures: 0°C to 20°C, content: 410 ml	92
WCF-VESF-300 WCF-VESF-E-300 WCF-VESF-410 WCF-VESF-E-410	ELBRUS - Vinylester Injection Anchors - FOR MEDIUM LOADS WCF-VESF-300 - Application temperatures: 5°C to 30°C, content: 300 ml WCF-VESF-E-300 - Application temperatures: 10°C to 45°C, content: 300 ml WCF-VESF-410 - Application temperatures: 5°C to 30°C, content: 410 ml WCF-VESF-E-410 - Application temperatures: 10°C to 45°C, content: 410 ml	98
WCF-PESF-300 WCF-PESF-E-300 WCF-PESF-C-300 WCF-PESF-E-410	MONT BLANC - Polyester injection anchors - FOR MEDIUM LOADS WCF-PESF-300 - Application temperatures: 5°C to 30°C, content: 300 ml WCF-PESF-E-300 - Application temperatures: 10°C to 45°C, content: 300 ml WCF-PESF-C-300 - Application temperatures: -10°C to 30°C, content: 300 ml WCF-PESF-E-410 - Application temperatures: 10°C to 45°C, content: 410 ml	100

INDEX

CHEMICAL ANCHORS - ACCESSORIES

PGO / PGO5 PGO8 / PGOA2 PGOA4		Threaded rods for injection anchors	103
KPG KPGA2		Anchor rods for injection anchors	104
NM / Pon/ Pod		Nuts and washers	105-106
DCF-300 DCF-410 DCF-585		Injection anchor dispensers	107
TSM		Metal mesh sleeve for hollow materials	107
TSN		Nylon mesh sleeves for fastening in hollow base materials	108
MCF		Mixing nozzle	108
PCF		Hole cleaning pump	109
SCF	Current Curren	Hole cleaning brush	109
SCF-H	==	Deep hole cleaning brush	109
MCF-P		Extension hose	110
MCF-PK		Extension tube	110
TCF		Resin stopper	110

Wkręt-met KLIMAS

TYPE OF ANCHORS

Anchoring by friction (expansion achieved by tightening) - load acting on fastener is transferred to the base material via friction forces arising between fastener and substrate. Expansion forces are achieved thanks to torque applied by tightening the screw, what cause sleeve to press against the side of drilled hole due to moving cone.

Anchoring by friction (expansion achieved by displacement) – load acting on fastener is transferred to the base material via friction forces arising between fastener and substrate. Expansion is generally achieved by impacts acting on sleeve or cone , what causes their displacement and pressing against the side of drilled hole.

Undercut fixing (achieved by screwing) – is characterised by mechanical interlock between fastener and substrate. Concrete screws are screwed into a pre-drilled cylindrical hole. The special thread of the fastener cuts an internal thread into the concrete member while setting. Installation is possible with a torque wrench or impact screw driver.

Anchoring by bonding – the load is transferred using adhesion forces between embedded metal part of fastener and substrate using resin. Bonding processes arise as a result of mixing two components (resin and hardener). By avoiding mechanical expansion, they do not introduce during installation stress into the substrate and can be installed close to each other and to substrate edges. Bonded systems could be utilised for standard anchoring purposes or also for post-installed rebaring applications. In the case of hollow masonry substrate additionally a plastic or metal mesh sleeve must be used, that prevents the resin to get lost in the voids.

FACTORS DETERMINATING SELECTION OF ANCHORS

The selection and correct installation of an anchor are essential points. Thus users should consider the following factors for the selection:

Type of fastening (structural, non-structural). Consider whether connection is of a structural type (fastening main structural members of building - e.g. beams, columns, wall plates, staircase cantilevers, etc.) or non-structural heavy elements need to be anchored or whether installation of lightweight interior furnishing elements (skirting boards, lighting elements, frames of paintings and pictures).

Substrate material (concrete strength class, cracked or non-cracked concrete, solid brick, hollow brick) - Depending on type of substrate suitable anchor must be selected. Some anchors are approved to be used in many substrates, while others are designed for a particular one type of substrate.

Value and type of load - An increase in load value determines selection of type and diameter of an anchor. For chemical anchors, it can indicate a required diameter and rod anchorage depth. A chemical anchor with a larger diameter and deeper anchorage can transfer higher loads. The direction of the load (tension, shearing, combination of these two).

Spacing and distance from edge - Fixing should be done while keeping essential installation conditions (recommended spacing and edge distances) in order to obtain full loading resistance. These values can be reduced to minimum values, however this has an impact on loading resistance of anchors and in such case, appropriate reduction factors should be applied.

Environmental conditions

Atmospheric conditions determine selection of material or anti-corrosion protection of anchor. Fastenings located in chemical plants or coastal areas are more exposed to corrosion risk.

Installation parameters and additional requirements

Fastenings located in seismic areas, dynamic loads acting, required resistance under fire exposure , type of drilling , concrete conditions. Diameter of clearance hole in fixture, installation torque value.

Substrate types

Wide range of construction materials are currently available on the market. Substrates in general can be divided into solid and with voids. First group includes normal weight concrete, solid ceramic and silicate bricks and Autoclaved Aerated Concrete blocks. Substrates with voids include various types of perforated bricks, hollow blocks, and all masonry materials containing any type of voids.

Cracked and uncracked concrete

Concrete as construction material has a very high compressive strength, but its tensile strength is low. Therefore, in the zone where tensile stresses occur, steel reinforcement bars (so-called rebars) are used, which are designed to transfer tensile stresses. Such structure is called reinforced concrete.

In loaded reinforced concrete element, there are always two stress zones separated by neutral axis: tension zone and compression zone. Cracked concrete is present in the tension zone, while non-cracked in the compression zone. Micro cracks appearing in the tension zone are normal (maximum acceptable crack width is 0.3 mm). The tension zone occurs predominantly in the bottom part of the cross-section in the concrete elements supported on both ends (due to behaviour of the load), however can't be considered as general rule for all structures. The figure below shows a typical example of simply supported reinforced concrete beam with a marking of cracked zone.

The strength of concrete is defined by its class given in the form of an abbreviation (e.g. C20/25) in accordance with the EN 206:2013+A1:2016 standard. Two numbers stand for characteristic compressive strength in MPa measured on cylindrical and cubic test samples, respectively.

Masonry wall is a wall constructed from individual units, which are often laid in and bound together with the use of mortar. The individual masonry unit can be solid or with voids. Although masonry with voids have very good thermal insulation characteristics and sufficient compressive strength ,they are very weak substrate material for anchoring purposes.

DRILLING METHODS:

There are four main types of drilling:

Rotary drilling - is the use of a continuous circular motion of the drill bit without generating hammering motion. Recommended for drilling in masonry with voids and in base materials with low compressive strength. Does not cause hole enlargement due to cracking of masonry unit internal structure.

Reduced hammer drilling - drilling is performed by rotation with generating also low energy hammering motion. Recommended for base materials, which are solid but brittle. Full hammer drilling - is a type of rotary drill with an impact mechanism that generates full energy hammering motion. Recommended for concrete substrates , which have

high strength characteristics compared to other materials.

Diamond drilling - mainly used when drilling holes in reinforced concrete with a large diameter and/or large depth.

INSTALLATION CONDITIONS

There is a number of conditions, that allow installation and use in service during working life of chemical anchors. We distinguish installation and use of chemical anchors in dry concrete, wet concrete (water-saturated), water-filled holes and also in fully immersed under water conditions. Keep in mind , that the load-bearing capacity of the fastening installed in wet concrete or water-filled hole may be lower than that one performed in dry concrete.

Dry concrete

Hole fully immersed under water

INSTALLATION METHODS

There are two installation methods:

Pre-positioned installation - it involves drilling a hole in the substrate, setting the anchor in the hole first and then installing the fixture. This requires preliminary marking of drilling points. The diameter of the hole in the fixture is usually smaller than in the substrate.

Push-through installation - it involves drilling a hole in the substrate, setting anchor in the hole through the fixture. The diameter of the hole in the fixture is equal or larger than in the substrate. In this case, it is not necessary to mark points of drilling.

INSTALLATION TORQUE

After setting the anchor in the substrate, the appropriate installation torque should be applied to secure the fixture using a calibrated torque wrench. Furthermore, it is extremely important in the case of anchors with working principle through the frictional force obtained by tightening. The correct expansion of the fastener depends on the applied value of installation tightening torque.

Design of chemical and mechanical KLIMAS anchors has never been so easy!

Klimas DesignFiX

- fast and intuitive selection of fastener

- · Using our software , you can quickly and easily design anchors exactly according to your requirements and needs.
- Software is designed by engineers in accordance with the European standard EN-1992-4:2018 (Design of fastenings for use in concrete) and the standard EN 1992-1-1 (Design of post-installed rebar connections).
- · Intuitive interface allow you to input all load and geometry data directly on the 3D drawing.
- The software displays the anchors that meet the required design criteria in real time and gives their percentage of utilisation.
- To save costs and installation time software chooses optimal embedment depth for chemical anchors.
- KLIMAS Design Fix software allows to design all anchor pattern according to particular standard and many shapes of base plate.
- Ideal tool for designers , engineers, architects and project site managers, but also for building owners, developers and contractors.
- Available in many languages.

Wkręt-met KLIMAS

Software is available free of charge.

To download our software or to get more information please contact us.

SQCERAMIC 10, improved resistance to corrosion*

*) compared to galvanising 5 µm

WHAT IS Sq ceramic?

SQ Ceramic lamellar coating application technology is the modern way of protection against corrosion. Lamellar coating application technology properties are also used in the automotive and aerospace industries. The coating consists of a mix of zinc and aluminium flakes, and binding resins. The lamellar coating is characterised by exceptionally effective protection against corrosion despite a relatively thin layer. This ensures 10-time higher protection against corrosion in relation to zinc plating and 2-time higher protection in relation to hot-dip galvanizing (HDG). The coating has also high resistance to chemicals and UV radiation but does not contain heavy metals, including hexavalent chromium (VI).

SQ CERAMIC

INNOVATIVE STRUCTURE OF SQ CERAMIC

tool

MAIN CHARACTERISTICS

- \cdot Very high protection against corrosion.
- Non hexavalent chromium (Cr-VI).
- · Thermal resistance up to 260°C.
- Resistant to UV.

TYPICAL CORROSIVE ENVIRONMENTS

LOADS ACTING ON ANCHORS

The following loads can act on anchors:

Tensile (or compression) force (N) – is a force trying to pull fastener out of the substrate (or pushing) acting along the axis of the fastener.

Resultant force (S) - is a single force that would produce the same effect on the fasteners as two or more forces that are applied simultaneously.

Μ

Shear force (V) - is a force acting in a direction perpendicular to the axis of the fastener applied in the point of contact of the fastener with the substrate.

Bending moment (M) – as a result of the action of the shear force at some distance from the substrate, a bending moment arises, which is the product of the length of lever arm and the value of this force.

These forces can cause failure of anchor or base material and load-bearing resistance of fastening will not be provided anymore. The load-bearing capacity of the anchorage depends on the essential factors such as: substrate type, type of fastener, steel class of fastener, anchorage depth, spacing and edge distance and bond strength of resin (for chemical anchors).

Static loads - constant value load over time. Static loads include permanent loads (self-weight of the structure) and variable loads (resulting from operation, e.g. goods on a shelf). Dynamic loads – loads of a variable value (alternating - of a sinusoidal or pulsating nature), among which, due to the frequency, we can distinguish fatigue loads (of high frequency and long duration, e.g. devices or engines), seismic or impact loads (single shock).

FAILURE CAUSED BY ACTION OF TENSILE AND SHEAR FORCES

TENSILE LOADS:

Failure of steel (fastener)

Failure mode characterized by fracture of the steel fastener part, occurs due to action of tensile force applied along the axis of a fastener. The load-bearing capacity of the anchorage depends on the class of steel the fastener is made of and its diameter.

Concrete cone failure

As a result of action of tensile force the fastener, along with the substrate material, is pulled out as a cone-shaped piece. The load-bearing capacity of the anchorage depends on strength of the substrate material (class of concrete used) and the anchorage depth.

Pull-out failure

Failure mode in which the fastener due to tensile force applied is pulled out of the concrete without development of the full concrete resistance. The load-bearing capacity of the anchorage depends on pull-out resistance of the mechanical fasteners or for chemical anchors on bond strength of resin and the anchorage depth.

Splitting failure

Concrete failure mode in which the concrete fractures along a plane passing through the axis of the fastener. This type of failure occurs predominantly in case when the thickness of the substrate is insufficient.

SHEAR LOADS:

Failure of steel (fastener)

Failure mode characterized by fracture of the steel fastener part, occurs due to action of shear force applied perpendicular to the longitudinal axis of a fastener. The load-bearing capacity of the anchorage depends on the class of steel the fastener is made of and its diameter.

Pry-out failure

Concrete failure mode that corresponds to the formation of a concrete spall opposite to the loading direction under shear loading. The load-bearing capacity of the anchorage depends on strength of the substrate material (class of concrete used) and the anchorage depth.

Concrete edge failure

Concrete failure mode occurring due to action of shear load applied on anchor situated near to an edge and in direction towards the edge of the concrete member in case when edge distance is insufficient.

SPACING AND EDGE DISTANCE

A very important point is the correct installation of the anchor along with keeping the recommended installation parameters. In such situation, the anchors can provide optimal stress distribution and achieve full load-bearing capacity.

Minimum installation parameters to be considered:

- minimum substrate thickness (depending on anchorage depth) h_min
- minimum spacing between fasteners s_{min},
- minimum edge distance c_{min}.

If characteristic values of spacing and edge distance can not be fulfilled, it is possible to reduce them to minimum values. To determine resistance of such anchorage , reduction factors should be taken into account as concrete cones of adjacent fasteners are overlapping each other.

WEDGE ANCHORS - TECHNICAL DATA

Information	Name		Wedg	e anchor	
_	Code	LE-ZN	LE-ZNA4	LE-DA4	LE-A4
	ETA	ETA 20/0640	ETA 20/0641	ETA 20/0641	ETA 20/0641
nents	ITB	-	-	-	-
Docu	Seismic	-	C1 (C2 in preparation)		
	Resistance under fire exposure	R30 - R120	R30 - R120	R30 - R120	R30 - R120
strate	Uncracked concrete	Option 7			
Subs	Cracked concrete		Option 1	Option 1	Option 1
	Galvanized	BOLT / WEDGE / NUT, WASHER	BOLT / NUT, WASHER		
Material	SQ Ceramic			BOLT / NUT, WASHER	
	Stainless steel A4		WEDGE	WEDGE	BOLT / WEDGE / NUT, WASHER
Tension load resistance	Design resistance of single anchor not influenced by adjacent fasteners or edges of the concrete member N_{Rd} Assumptions: Anchor 08 x 115, standard anchorage depth h_{ef} =40 mm Anchor 10 x 115, standard anchorage depth h_{ef} =60 mm Anchor 12 x 115, standard anchorage depth h_{ef} =70 mm Anchor 16 x 115, standard anchorage depth h_{ef} =85 mm Concrete C20/25 - uncracked	30,00 25,00 20,00 15,00 8,30 kN 10,00 5,00 0,00 LE-ZN, LE-ZN LE-DA4, LE- 08 x 115	15,24 kN 15,24 kN NA4 LE-ZN, LE-ZNA4 L A4 LE-DA4, LE-A4 I 10 x 115	NRd [kN] 19,21 kN E-ZN, LE-ZNA4 LE-DA4, LE-A4 12 x 115 16 x 115	25,70 kN LE-ZN 4 16 x 115
	Page	34	38	42	46

Wkręt-met KLIMAS

CONCRETE SCREWS - TECHNICAL DATA

					Service and Summer				
Information	Name	Concrete screw with hex washer head	Concrete screw with countersunk head, TX	Concrete screw with pan head, TX	Concrete screw with external metric thread	Concrete screw with internal metric thread			
	Code	WDBLS	WDBLP	WDBLG	WDBGZ	WDBGW			
cuments	ETA	ETA-20/0769: WDBLS-06060 / WDBLS-06080 ETA -20/0768: WDBLS-08070 / WDBLS-08080 / WDBLS-10080/ WDBLS-10090 / WDBLS-10100 / WDBLS-10110 / WDBLS-10120/ WDBLS-10130 / WDBLS-10140	ETA-20/0769: WDBLP-06080/ WDBLP-06100/WDBLP-06120 ETA -20/0768: WDBLP-08080/ WDBLP-08150 / WDBLP-10090 / WDBLP-10110 / WDBLP-10150	ETA-20/0769	-	ETA-20/0769			
8	ITB								
	Seismic								
	Resistance under fire exposure	R30-R120	R30-R120	R30-R120	-	R30-R120			
	Uncracked concrete	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
fe	Cracked concrete	\checkmark	\checkmark	\checkmark		\checkmark			
Substra	Cracked concrete, multiple non-structural applications	ETA-20/0769 only for multiple fastening in non-structural applications							
	Uncracked concrete, multiple non-structural applications	ETA-20/0769 only for multiple fastening in non-structural applications							
	Galvanized	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
Material	SQ Ceramic								
	Stainless steel A4								
Tension load resistance	Design resistance of single anchor not influenced by adjacent fasteners or edges of the concrete member N_{ed} Assumptions: Concrete screw WDBLS-06080/WDBLP-06080/WDBLG-06080/WDBGW-06057 anchorage depth h_{nom} =55 mm Concrete screw WDBLS-08080/WDBLP-08080 anchorage depth h_{nom} =65 mm Concrete screw WDBLS-10080/WDBLP-10090 anchorage depth h_{nom} =75 mm Concrete C20/25 - uncracked	10,00 8,00 6,00 4,00 2,00 0,00 W	2,67 kN 3,33 k DBLG-06080 WDBLS-06 WDBLP-06 WDBLP-06 WDBGW-06	NRd [kN] 4,29 kl N 080 WDBLS-08 080 WDBLS-08 080 WDBLP-08	10,67 kN N 8080 WDBLS-10080 WDBLP-10090				
	Page	54	58	62	66	70			

29

Wkręt-met

KLIMAS

KLIMAS FASTENER TECHNOLOGIES

CHEMICAL ANCHORS - TECHNICAL DATA

1	
BONDE	2
a a a a a a a a a a a a a a a a a a a	14

Chemical anchor		MOUNT EVEREST	NANDA-KOT					
UIICIIIILa		WCF-E3	WCF-XS	WCF-XS-E	WCF-XS-C			
		Standard	Standard	Tropical	Winter			
Classific	cation		PROFESSIONAL					
Туре		Pure Epoxy		Hybrid				
Cartridg	e size	585 ml	410 ml	410 ml	410 ml			
lts	Concrete	ETA 17/0234		ETA 20/0617				
nme	Post-installed rebar connections	ETA 15/0681						
Doc	Masonry	-		-				
eel nent	Threaded rods	\checkmark		\checkmark				
Ste	Rebars	\checkmark		\checkmark				
	Uncracked concrete	\checkmark		\checkmark				
	Cracked concrete	\checkmark	\checkmark					
	Solid clay brick	×	×					
tes	Hollow clay brick	×	×					
ostra	Solid calcium silicate brick	×	×					
Sul	Hollow calcium silicate brick	×		×				
	Hollow clay brick POROTHERM	×						
	Lightweight concrete hollow block	×						
	AAC block	×						
	Minimum curing time							
	(-) 10ºC - (-) 5ºC	-	-	-	-			
	(-) 5ºC - (+) 5ºC	-	-	-	(from+/- 0ºC) 75 min.			
ature	(+) 5°C - (+) 10°C	24 h	145 min	-	50 min.			
mper	(+) 10°C - (+) 20°C	(to+ 15°C) 18 h - (from + 15°C) 12 h	(to +15°C) 85 min (from +15°C) - 75 min.	(from + 15°C) 5 h	50 min.			
ial tei	(+) 20°C - (+) 25°C	8 h	50 min.	145 min.	(+20°C) 20 min.			
nater	(+) 25°C - (+) 30°C	6 h	40 min.	85 min.	-			
ise m	(+) 30 ⁰ C	4 h	40 min.	50 min.	-			
ä	(+) 30°C - (+) 35°C	4 h	-	50 min.	-			
	(+) 35 ⁰ C - (+) 40 ⁰ C	2 h	-	40 min.	-			
	(+) 40° (; - (+) 45° (;	-	-	-	-			
	(+) 45° C							
	Design resistance of single	NKU [KN]	ΝΚά [ΚΝ]	ΙΝΚά [ΚΙΝ]	INKA (KN)			
Ð	anchor not influenced by adjacent	28.00 kN*						
tanc	member $N_{\rm pd}$	25,00 —	25,00	25,00	25,00			
resis	Assumptions:	20.00 —	20,00 kN*	20,00 kN*	20,00 kN*			
load	Threaded rod M12x160, class 5.8	15.00	15.00	15.00	15.00			
nsion	Concrete C20/25 - uncracked	10.00	10.00	10.00	10.00			
Te	* threaded rod M12 kl. 5.8	10,00	0,00	10,00 F 00	5.00			
	^^ threaded rod M12 kl. 8.8 (28 kN = 100 %)	5,00	5,00	5,00	5,00			
		0,00	0,00	U,U0	U,U0			
	Page	84	88	88	88			

CHEMICAL ANCHORS - TECHNICAL DATA

KLIMAS FASTENER TECHNOLOGIES

Chemical anchor		MAKALU			ELBRUS		MONT BLANC			
Gnemica		WCF-EASF	WCF-EASF-E	WCF-EASF-C	WCF-VESF	WCF-VESF-E	WCF-PESF	WCF-PESF- E	WCF-PESF-C	
		Standard	Tropical	Winter	Standard	Tropical	Standard	Tropical	Winter	
Classific	ation		PROFESSIONAL				BASIC			
Туре			Methacrylate		Vinyl	ester		Polyester		
Capacity	1	410 ml	410 ml	410 ml	300 / 410 ml	300 / 410 ml	300 ml	300 / 410 ml	300 ml	
nts	Concrete		ETA 15/0702		ETA 15	ETA 15/0744		ETA 15/0745		
cume	Post-installed rebar connections	ETA 15/0703				-		-		
Doc	Masonry		ETA 20/0618			-		ETA 16/0677		
eel nent	Threaded rods		\checkmark		v	(✓		
eler	Rebars		\checkmark		>	<		×		
	Uncracked concrete		\checkmark		v	(\checkmark		
	Cracked concrete		\checkmark		>	<		×		
	Solid clay brick		\checkmark		>	<		~		
tes	Hollow clay brick		\checkmark		>	<		\checkmark		
bstra	Solid calcium silicate brick		\checkmark		>	<		\checkmark		
Sul	Hollow calcium silicate brick		\checkmark		>	<		\checkmark		
	Hollow clay brick POROTHERM	\checkmark			×			\checkmark		
	Lightweight concrete hollow block		×		×			\checkmark		
	AAC block		×		>	<		×		
	Minimum curing time									
	(-) 10ºC - (-) 5ºC	-	-	-	-	-	-	-	4 h	
	(-) 5ºC - (+) 5ºC	-	-	(from O ^o C) -75 min.	-	-	-	-	125 min.	
an	(+) 5°C - (+) 10°C	145 min.	-	50 min.	145 min.	-	145 min.	-	60 min.	
emperat	(+) 10°C - (+) 20°C	(to +15 ⁰ C) - 85 min. from (+15 ⁰ C) -75 min.	(from + 15ºC) 5 h	50 min.	85 min.	5 h	85 min.	5 h	40 min.	
erial t	(+) 20°C - (+) 25°C	50 min.	145 min.	(+20°C) 20 min.	50 min.	145 min.	50 min.	145 min.	20 min.	
mate	(+) 25°C - (+) 30°C	40 min.	85 min.	-	40 min.	85 min.	40 min.	85 min.	15 min .	
Base	(+) 30°C	40 min.	50 min.	-	35 min.	50 min.	35 min .	50 min.	10 min .	
	(+) 30°C - (+) 35°C	-	50 min.	-	-	50 min.	-	50 min.	-	
	(+) 35 ⁰ C - (+) 40 ⁰ C	-	40 min.	-	-	40 min.	-	40 min.	-	
	(+) 40° C - (+) 45° C	-	-	-	-	35 min.	-	35 min.	-	
	[+] 45º l'	-	-	-	-	12 min.	-	12 min.	-	
nce	Design resistance of single anchor not influenced by adjacent fasteners or edges of the concrete	NKd [kN] 20,00 kN*	NKC [KN] 20,00 kN*	NKC [KN] 20,00 kN*	NKC [kN] 18,80 kN*	NKC [kN] 18,80 kN*	NKC [KN] 18,80 kN*	NKC [KN] 18,80 kN*	NKa [kN] 18,80 kN*	
sista	member N _{Rd} Assumptions:	20,00	20,00	20,00	20,00	20.00	20,00	20,00	20,00	
ad re	Threaded rod M12x160, class 5.8	15.00	15.00 -	15.00	15.00	15.00	15.00	15.00 -	15.00	
ol no	h _{ef} = 100 mm	10,00	10.00	10.00	10,00	10,00	10.00	10.00	10.00	
Tensi	Concrete C2U/25 - uncracked * threaded rod M12 kL 5 8	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	
	** threaded rod M12 kl. 8.8	5,00	5,00 —	5,00 —	5,00	5,00	5,00	5,00	5,00	
	[28 kN = 100 %]	U,00	U,00	U,00 —	U,00	U,00	U,00	U,00 -	U,00	
	Page	92	92	94	98	98	100	100	100	

E-A4

WEDGE ANCHORS

for normal weight cracked or uncracked concrete, reinforced or unreinforced of strength class from C20/25 to C50/60

LE-ZNA4 / LE-DA4 / LE-A4

CE

ANTI-CORROSION PROTECTION

Galvanized steel - Guarantees high degree of anti-corrosion protection **SQ Ceramic** - Special anti-scratch multi-layer aluminum-zinc lamellar coating allows the use of the anchors in environments with higher corrosivity classification. **Stainless Steel A4** - Highest level of anti-corrosion protection.

RESISTANCE UNDER FIRE EXPOSURE R30 - R120

Anchor's characteristics regarding resistance to load under fire exposure influence the safety of anchorages during a fire. Value of resistance to load under fire exposure determined for particular fire duration from R30 to R120 allows to design optimal fastenings for each type of applications complying with required fire resistance class.

unn

33

KLIMA

FASTENER TECHNOLOGIES

Galvanized steel

M8	LE-ZN Length range: 60 - 155 mm
M10	LE-ZN Length range: 85 - 155 mm
M2	LE-ZN Length range: 85 - 165 mm
M16	LE-ZN Length range: 105 - 165 mm

Wedge anchor

Powerful mechanical anchor for standard static and quasi-static loads, designed for setting in uncracked concrete.

SUBSTRATES

Normal weight uncracked concrete, reinforced or unreinforced of strength class from C20/25 to C50/60.

BOLT MATERIAL	Carbon steel				
CORROSION PROTECTION	Galvanized				
HEAD TYPE	Hexagonal nut				
WEDGE MATERIAL	Galvanized carbon steel				
NUT AND WASHER MATERIAL	Galvanized carbon steel				
INSTALLATION METHOD	Push-through installation				
APPLICATION	 Machine and device installation. Installation of railings, handrails, balustrades inside buildings. Anchoring of base plates, consoles, cantilevers, cable trays in dry internal conditions. Fixing of steel construction to concrete structural components in dry internal conditions inside the buildings. 				

FAST AND EASY INSTALLATION

• Fast and easy installation by hammering the anchor into pre-drilled hole and tightening with required value of torque.

- Immediate loading capacity.
- The diameter of the hole is equal to anchor's bolt diameter.
- · Cold formed steel prevents fracture of anchor's bolt while hammering and tightening.

THE HIGHEST PERFORMANCE PARAMETERS

State of the art machine park and many years of experience contribute to highest performance parameters of products. Our anchors are dedicated as a professional solution for structural fastenings with highest demands.

RESISTANCE UNDER FIRE EXPOSURE R30-R120

Anchor's characteristics regarding resistance to load under fire exposure influence the safety of anchorages during a fire. Value of resistance to load under fire exposure determined for particular fire duration from R30 to R120 allows to design optimal fastenings for each type of applications complying with required fire resistance class.

٦

SELECTION TABLE

	Product code	Anchor diameter and length	Max. usable length	Thread	Head type	Unit pack quantity				
		d _w x L _w [mm]	t_{fix1} / t_{fix2} [mm]	[-]	[-]	[pcs.]				
			LE-ZN M8							
	LE-ZN-08060	8x60	5/-	M8	SW-13	100				
м8	LE-ZN-08075	8x75	20 / -	M8	SW-13	100				
	LE-ZN-08095	8x95	40 / -	M8	SW-13	50				
	LE-ZN-08115	8x115	60 / -	M8	SW-13	50				
	LE-ZN-08135	8x135	80 / -	M8	SW-13	50				
	LE-ZN-08155	8x155	100 / -	M8	SW-13	50				
	LE-ZN M10									
	LE-ZN-10085	10x85	5 / 25	M10	SW-17	50				
м10	LE-ZN-10095	10x95	15 / 35	M10	SW-17	50				
	LE-ZN-10105	10x105	25 / 45	M10	SW-17	25				
	LE-ZN-10115	10x115	35 / 55	M10	SW-17	25				
	LE-ZN-10135	10x135	55 / 75	M10	SW-17	25				
	LE-ZN-10155	10x155	75 / 95	M10	SW-17	25				
			LE-ZN M12							
	LE-ZN-12085	12x85	- / 5	M12	SW-19	40				
	LE-ZN-12095	12x95	- / 15	M12	SW-19	50				
	LE-ZN-12105	12x105	5 / 25	M12	SW-19	50				
м12	LE-ZN-12115	12x115	15 / 35	M12	SW-19	40				
	LE-ZN-12125	12x125	25 / 45	M12	SW-19	25				
	LE-ZN-12145	12x145	45 / 65	M12	SW-19	25				
	LE-ZN-12165	12x165	65 / 85	M12	SW-19	25				
			LE-ZN M16							
м16	LE-ZN-16105	16x105	- / 5	M16	SW-24	25				
	LE-ZN-16115	16x115	- / 15	M16	SW-24	25				
	LE-ZN-16125	16x125	5 / 25	M16	SW-24	25				
	LE-ZN-16145	16x145	25 / 45	M16	SW-24	20				
	LE-ZN-16165	16x165	45 / 65	M16	SW-24	15				

INSTALLATION INSTRUCTIONS

LE-ZN - TECHNICAL DATA

ETA-20/0640

INSTALLATION PARAMETERS - STANDARD EMBEDMENT DEPTH							
Anchor diameter	d	[mm]	Ø8	Ø10	Ø12	Ø16	
Drill hole diameter	d _o	[mm]	8	10	12	16	
Effective embedment depth	h _{ef}	[mm]	40	60	70	85	
Depth of drill hole	h _o ≥	[mm]	52	74	88	106	
Diameter of clearance hole in the fixture	d _f ≤	[mm]	10	12	14	18	
Installation torque	T _{inst}	[Nm]	20	30	50	100	
Size of torque wrench	Sw	[mm]	13	17	19	24	
Minimum thickness of concrete member	h _{min}	[mm]	100	120	160	170	
Minimum spacing	S _{min}	[mm]	54	82	109	116	
Minimum edge distance	C _{min}	[mm]	54	82	109	116	
INSTALLATION PARAMETERS - STANDARD EMBEDMENT	DEPTH						
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure	S _{cr,N}	[mm]	120	180	210	255	
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure	C _{cr,N}	[mm]	60	90	105	127,5	
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure	S _{cr,sp}	[mm]	200	300	400	425	
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure	C _{cr,sp}	[mm]	100	150	200	215	
TENSION LOAD - STANDARD EMBEDMENT DEPTH							
Characteristic resistance in case of steel failure	N _{Rk,s}	[kN]	16,2	27,7	38,6	71,9	
Design resistance in case of steel failure [$\gamma_{M,s}$ =1,81]	N _{Rd,s}	[kN]	8,9	15,3	21,3	39,7	
Characteristic resistance in case of pull-out failure	N _{rk,p}	[kN]	*	*	*	*	
Design resistance in case of pull-out failure [$\gamma_{\text{M},\text{p}}$ =1,5]	N _{Rd,p}	[kN]	*	*	*	*	
Characteristic resistance in case of concrete cone failure	N _{Rk,c}	[kN]	12,4	22,9	28,8	38,6	
Design resistance in case of concrete cone failure [$\gamma_{\text{M,c}}\text{=1,5}$]	N _{Rd,c}	[kN]	8,3	15,2	19,2	25,7	
Characteristic resistance in case of splitting failure	N _{Rk,sp}	[kN]	12,4	22,9	28,8	38,6	
Design resistance in case of splitting failure ($\gamma_{M,\rm sp}$ =1,5)	N _{Rd,sp}	[kN]	8,3	15,2	19,2	25,7	
SHEAR LOAD - STANDARD EMBEDMENT DEPTH							
Characteristic resistance in case of steel failure	V _{Rk,s}	[kN]	12,4	19,7	28,7	53,4	
Design resistance in case of steel failure ($\gamma_{M,s}$ =1,51)	V _{Rd,s}	[kN]	8,2	13,1	19,0	35,4	
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	38,0	75,4	131,6	316,0	
Design bending resistance $[\gamma_{M,s} = 1,51]$	M _{Rd,s}	[Nm]	25,2	49,9	87,2	209,2	
Characteristic resistance in case of concrete pry-out failure	V _{Rk,cp}	[kN]	12,4	22,9	28,8	77,1	
Design resistance in case of concrete pry-out failure [$\gamma_{\text{M,cp}}$ =1,5]	V _{Rd,cp}	[kN]	8,3	15,2	19,2	51,4	

* - is not decisive
KLIMAS FASTENER TECHNOLOGIES

LE-ZN - TECHNICAL DATA

INSTALLATION PARAMETERS - REDUCED EMBEDMENT DEPTH						
Anchor diameter	d	[mm]	Ø8	Ø10	Ø12	Ø16
Drill hole diameter	d _o	[mm]	-	10	12	16
Effective embedment depth	h _{ef}	[mm]	-	40	50	65
Depth of drill hole	h ₀ ≥	[mm]	-	54	68	86
Diameter of clearance hole in the fixture	d _f ≤	[mm]	-	12	14	18
Installation torque	T _{inst}	[Nm]	-	30	50	100
Size of torque wrench	Sw	[mm]	-	17	19	24
Minimum thickness of concrete member	h _{min}	[mm]	-	100	100	130
Minimum spacing	S _{min}	[mm]	-	54	68	88
Minimum edge distance	C _{min}	[mm]	-	54	68	88
INSTALLATION PARAMETERS - REDUCED EMBEDMENT	DEPTH				1	
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure	S _{cr,N}	[mm]	-	120	150	195
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure	C _{cr,N}	[mm]	-	60	75	97,5
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure	S _{cr,sp}	[mm]	-	200	250	325
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure		[mm]	-	100	125	165
TENSION LOAD - REDUCED EMBEDMENT DEPTH		1			I	1
Characteristic resistance in case of steel failure	N _{Rk,s}	[kN]	-	27,7	38,6	71,9
Design resistance in case of steel failure ($\gamma_{M,s}$ =1,81)	N _{Rd,s}	[kN]	-	15,3	21,3	39,7
Characteristic resistance in case of pull-out failure		[kN]	-	*	*	*
Design resistance in case of pull-out failure $[\gamma_{M,p}=1,5]$	N _{Rd,p}	[kN]	-	*	*	*
Characteristic resistance in case of concrete cone failure	N _{Rk,c}	[kN]	-	12,4	17,4	25,8
Design resistance in case of concrete cone failure ($\gamma_{\text{M},c}\text{=}1,5)$	N _{Rd,c}	[kN]	-	8,3	11,6	17,2
Characteristic resistance in case of splitting failure	N _{Rk,sp}	[kN]	-	12,4	17,4	25,8
Design resistance in case of splitting failure $[\gamma_{\rm M,sp}=1,5]$	N _{Rd,sp}	[kN]	-	8,3	11,6	17,2
SHEAR LOAD - REDUCED EMBEDMENT DEPTH						
Characteristic resistance in case of steel failure	V _{Rk,s}	[kN]	-	19,7	28,7	53,4
Design resistance in case of steel failure (γ_{Ms} =1,51)	V _{Brl s}	[kN]	-	13,1	19,0	35,4
Characteristic bending resistance	M ⁰ _{Pk c}	[Nm]	-	75,4	131,6	316,0
Design bending resistance (γ_{Ms} =1,51)	M _{Rd e}	[Nm]	_	49,9	87,2	209,2
Characteristic resistance in case of concrete pry-out failure	V _{pk op}	[kN]	-	12,4	17,4	51,6
Design resistance in case of concrete pry-out failure ($\gamma_{M,cp}$ =1,5)	V _{Rd,cp}	[kN]	-	8,3	11,6	34,4

* - is not decisive

Wedge anchor

LE-ZNA4

Powerful mechanical anchor for static, quasi-static and seismic loads, designed for setting in both cracked or uncracked concrete.

SUBSTRATE

Normal weight cracked or uncracked concrete , reinforced or unreinforced of strength class from C20/25 to C50/60

BOLT MATERIAL	Carbon steel				
CORROSION PROTECTION	Galvanized				
HEAD TYPE	Hexagonal nut				
WEDGE MATERIAL	Stainless steel A4				
NUT AND WASHER MATERIAL	Galvanized carbon steel				
INSTALLATION METHOD	Push-through installation				
APPLICATION	 Installation of facade steel substructures in non-aggressive environments. Machine and device installation. Installation of railings, handrails, balustrades inside buildings. Anchoring of base plates, consoles, cantilevers, cable trays in dry internal conditions. Fixing of steel construction to concrete structural components in dry internal conditions inside the buildings. 				

FAST AND EASY INSTALLATION

• Fast and easy installation by hammering the anchor into pre-drilled hole and tightening with required value of torque.

- · Immediate loading capacity.
- The diameter of the hole is equal to anchor's bolt diameter.
- · Cold formed steel prevents fracture of anchor's bolt while hammering and tightening.

THE HIGHEST PERFORMANCE PARAMETERS

State of the art machine park and many years of experience contribute to highest performance parameters of products. Our anchors are dedicated as a professional solution for structural fastenings with highest demands.

RESISTANCE UNDER FIRE EXPOSURE R30-R120

Anchor's characteristics regarding resistance to load under fire exposure influence the safety of anchorages during a fire. Value of resistance to load under fire exposure determined for particular fire duration from R30 to R120 allows to design optimal fastenings for each type of applications complying with required fire resistance class.

SEISMIC APPROVAL C1

Anchors have been tested for seismic loads, and thus are approved for use in applications in seismically active areas. Seismic approval allows to design reliable fastenings with increased level of safety.

I F-7NA4

Galvanized steel + Stainless steel M

ł

....

SELECTION TABLE

	Product code	Anchor diameter and length	Max. usable length	Thread	Head type	Unit pack quantity
		d _w x L _w [mm]	t_{fix1} / t_{fix2} [mm]	[-]	[-]	[pcs.]
			LE-ZNA4 M8			
м8	LE-ZNA4-08060	8x60	5/-	M8	SW-13	100
	LE-ZNA4-08075	8x75	20 / -	M8	SW-13	100
	LE-ZNA4-08095	8x95	40 / -	M8	SW-13	50
	LE-ZNA4-08115	8x115	60 / -	M8	SW-13	50
	LE-ZNA4-08135	8x135	80 / -	M8	SW-13	50
	LE-ZNA4-08155	8x155	100 / -	M8	SW-13	50
			LE-ZNA4 M10			
м10	LE-ZNA4-10085	10x85	5 / 25	M10	SW-17	50
	LE-ZNA4-10095	10x95	15 / 35	M10	SW-17	50
	LE-ZNA4-10105	10x105	25 / 45	M10	SW-17	25
	LE-ZNA4-10115	10x115	35 / 55	M10	SW-17	25
	LE-ZNA4-10135	10x135	55 / 75	M10	SW-17	25
	LE-ZNA4-10155	10x155	75 / 95	M10	SW-17	25
			LE-ZNA4 M12			
	LE-ZNA4-12085	12x85	- / 5	M12	SW-19	40
	LE-ZNA4-12095	12x95	- / 15	M12	SW-19	50
	LE-ZNA4-12105	12x105	5 / 25	M12	SW-19	50
м12	LE-ZNA4-12115	12x115	15 / 35	M12	SW-19	40
	LE-ZNA4-12125	12x125	25 / 45	M12	SW-19	25
	LE-ZNA4-12145	12x145	45 / 65	M12	SW-19	25
	LE-ZNA4-12165	12x165	65 / 85	M12	SW-19	25
			LE-ZNA4 M16			
	LE-ZNA4-16105	16x105	- / 5	M16	SW-24	25
	LE-ZNA4-16115	16x115	- / 15	M16	SW-24	25
м16	LE-ZNA4-16125	16x125	5 / 25	M16	SW-24	25
	LE-ZNA4-16145	16x145	25 / 45	M16	SW-24	20
	LE-ZNA4-16165	16x165	45 / 65	M16	SW-24	15

INSTALLATION INSTRUCTIONS

LE-ZNA4 - TECHNICAL DATA

ETA-20/0641

Anchor diameterdImm88910912918Dril hole diameterd_0Imm4101216Effective embedment depthh_aImm40607085Depth of drill holeh_bImm40607081Diameter of clearance hole in the fixtured_4Imm1001214100Isstallation torqueTmmImm100100100100100100Size of torque wrenchSImm100 <t< th=""></t<>
Drill hole diameter d_0 (mm) 8 10 12 16 Effective embedment depth h_{af} (mm) 40 60 70 80 Depth of drill hole h_{af} (mm) 52 74 88 106 Diameter of clearance hole in the fixture $d_1 \leq$ (mm) 10 12 14 18 Installation torque f_{inst} (mm) 100 12 14 18 Isse of torque wrench S_w (mm) 13 17 19 24 Minimum thickness of concrete member h_{min} (mm) 100 120 160 Minimum spacing S_{min} (mm) 54 82 109 116 Minimun edge distance S_{min} (mm) 54 82 109 160 Edge and spacing influence in case of concrete cone failure S_{crit} (mm) 510 100 250 Seging for ensuring the transmission of the characteristic resistance in tension of a single fastener s_{crit} mm 60 90 105 127 Seging for ensuring the transmission of the characteristic resistance in tension of a single fastener s_{crit} mm 200 300 200 210 Seging for ensuring the transmission of the characteristic resistance in tension of a single fastener s_{crit} mm 200 300 200 210 Seging for ensuring the transmission of the characteristic resistance in tension of a single fastener s_{crit}
Effective embedment depth h_{ell} (mm) 40 60 70 85 Depth of drill hole $h_0 ≥$ (mm) 52 74 88 106 Diameter of clearance hole in the fixture $d_1 ≤$ (mm) $d_1 ≤$ (mm) 10 12 14 18 Installation torque $d_1 <$ (mm) 20 30 50 100 Size of torque wrench S_w (mm) 13 17 19 24 Minimum thickness of concrete member h_{min} (mm) 100 120 160 170 Minimum spacing (mm) $6m$ mm mm 100 120 160 170 Minimum dge distance S_{min} (mm) $5d$ $8d$ 100 120 100 120 100 Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure S_{min} S_{min} Imm 100 180 210 210 Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure S_{min} S_{min} Imm 200 300 200 200 Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure S_{min} S_{min} Imm 300 300 400 210 Spacing for ensuri
Depth of drill hole Imm 52 74 88 106 Diameter of clearance hole in the fixture $d_f \le$ Imm 10 12 14 18 Installation torque T_{inct} IMm 20 300 500 100 Size of torque wrench Sw Imm 13 17 19 24 Minimum thickness of concrete member hmin Imm Imm 120 160 170 Minimum spacing m_{min} Imm 54 82 109 116 Minimum deg distance m_{min} Imm 54 82 109 116 Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure m_{min} Imm 120
Diameter of clearance hole in the fixture d, s (mm) 10 12 14 18 Installation torque T_{inst} (Nm) 20 30 500 100 Size of torque wrench S_w (mm) 13 17 19 24 Minimum thickness of concrete member h_{min} (mm) 100 120 160 170 Minimum spacing m_{min} m_{min} (mm) 100 120 100 110 Minimum edge distance m_{min}
Installation torque T_{irst} INm 20 30 50 100 Size of torque wrench S_w Imm 13 17 99 24 Minimum thickness of concrete member h_{min} Imm 100 120 160 170 Minimum spacing S_{min} Imm 54 82 109 116 Minimum edge distance C_{min} Imm 54 82 109 116 INSTALLATION PRAMETERS - STANDARD EMBEDMENTUse the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure S_{coN} Imm 120 180 210 255 Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure S_{coN} Imm 200 300 400 225 Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of solution failure S_{coN} Imm 200 300 400 225
Size of torque wrench S_w (mm) 13 17 19 24 Minimum thickness of concrete member h_{min} (mm) 100 120 160 170 Minimum spacing s_{min} (mm) 54 82 109 116 Minimum edge distance c_{min} (mm) 54 82 109 116 Minimum edge distance s_{min} (mm) 54 82 109 116 Minimum edge distance s_{min}
Minimum thickness of concrete member h_{min} [mm]100120160170Minimum spacing s_{min} [mm]5482109116Minimum edge distance c_{min} c_{min} 5482109116 INSTALLATION PARAMETERS - STANDARD EMBEDMENT VETTUR Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure s_{cxM} [mm]120180210255Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure s_{cxM} [mm]6090105127,5Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of soncrete cone failure s_{cxM} [mm]200300400425
Minimum spacingImm5482109116Minimum edge distance c_{min} Imm5482109116INSTALLATION PARAMETERS - STANDARD EMBEDMENTUSTALLATION parameters in tension of a single fastener without edge and spacing influence in case of concrete cone failure s_{cxN} (mm) 120 180 210 255 Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure s_{cxN} (mm) 60 90 105 127.5 Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure s_{cxN} (mm) 200 300 400 425
Minimum edge distanceImm5482109116INSTALLATION PARAMETERS - STANDARD EMBEDMENT DETERTSpacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure\$c_{r,M}\$[mm]120180210255Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure\$c_{c,N}\$[mm]6090105127,5Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure105127,5127,5
INSTALLATION PARAMETERS - STANDARD EMBEDMENT DEPTH Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure S _{crN} [mm] 120 180 210 255 Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure C _{crN} [mm] 60 90 105 127,5 Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure S _{crsP} [mm] 200 300 400 425
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failureImage: Source in case of concre
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure $c_{\alpha,N}$ (mm) 60 90 105 $127,5$ Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure $s_{\alpha,sp}$ (mm) 200 300 400 425
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure Society [mm] 200 300 400 425
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure $C_{cr.sp}$ [mm] 100 150 200 215
TENSION LOAD - STANDARD EMBEDMENT DEPTH
Characteristic resistance in case of steel failure N _{Rks} [kN] 16,2 27,7 38,6 71,9
Design resistance in case of steel failure ($\gamma_{M,s}$ =1,57) N _{Rds} [kN] 10,3 17,6 24,6 45,8
Characteristic resistance in case of failure by pull-out N _{Rkp} [kN] * * * *
Design resistance in case of failure by pull-out ($\gamma_{M,p}$ =1,5 for M8, M10, M12 $\gamma_{M,p}$ =1,8 for M16) N _{Rd,p} [kN] * * * *
uncracked concrete N _{Rkc} [kN] 12,4 22,9 28,8 38,6
cracked concrete N _{Rkc} [kN] 8,7 16,0 20,2 27,0
Design resistance in case of concrete cone failure uncracked concrete N _{Rdc} [kN] 8,3 15,2 19,2 21,4
(γ _{M,c} =1,5 for M8, M10, M12 γ _{M,c} =1,8 for M16) cracked concrete N _{Rdc} [kN] 5,8 10,7 13,4 15,0
uncracked concrete N _{Bksp} [kN] 12,4 22,9 28,8 38,6
cracked concrete N _{Rksp} [kN] 8,7 16,0 20,2 27,0
Design resistance of a single anchor in case of splitting failure uncracked concrete N _{Rtisn} [kN] 8,3 15,2 19,2 21,4
(Y _{M,sp} =1,5 for M8, M10, M12 Y _{M,sp} =1,8 for M16) cracked concrete N _{Rdsn} [kN] 5,8 10,7 13,4 15,0
SHEAR LOAD - STANDARD EMBEDMENT DEPTH
Characteristic resistance in case of steel failure
· R/c Ling (-), Log 10, Log
Design resistance in case of steel failure ($\gamma_{\star,\star}$ =1,31) $V_{h,\star}$ [kN]9,515.120.337.9
Design resistance in case of steel failure ($\gamma_{M,s}$ =1,31) $V_{Rd,s}$ [kN]9,515,120,337,9Characteristic bending resistance M_{0}^{0} N_{M1} 25,550.889,1226,4

* - is not decisive

KLIMAS FASTENER TECHNOLOGIES

LE-ZNA4 - TECHNICAL DATA

ETA-20/0641

INSTALLATION PARAMETERS - REDUCED EMBEDMENT DEPTH							
Anchor diameter		d	[mm]	Ø8	Ø10	Ø12	Ø16
Drill hole diameter		d _o	[mm]	-	10	12	16
Effective embedment depth			[mm]	-	40	50	65
Depth of drill hole		h _o ≥	[mm]	-	54	68	86
Diameter of clearance hole in the fixture		d _f ≤	[mm]	-	12	14	18
Installation torque		T _{inst}	[Nm]	-	30	50	100
Size of torque wrench			[mm]	-	17	19	24
Minimum thickness of concrete member			[mm]	-	100	100	130
Minimum spacing			[mm]	-	54	68	88
Minimum edge distance			[mm]	-	54	68	88
INSTALLATION PARAMETERS - REDUCED EMBEDMENT D			1			1	
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure		S _{cr,N}	[mm]	-	120	150	195
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure			[mm]	-	60	75	97,5
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure			[mm]	-	200	250	325
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure			[mm]	-	100	125	165
TENSION LOAD - REDUCED EMBEDMENT DEPTH							
Characteristic resistance in case of steel failure		N _{Rk,s}	[kN]	-	27,7	38,6	71,9
Design resistance in case of steel failure ($\gamma_{M,s}$ =1,57)			[kN]	-	17,6	24,6	45,8
Characteristic resistance in case of failure by pull-out			[kN]	-	*	*	*
Design resistance in case of failure by pull-out ($_{\gamma_{M,p}}$ =1,5 for M8, M10, M12 $\gamma_{M,p}$	_{л,р} =1,8 for M16)	N _{Rd,p}	[kN]	-	*	*	*
Characteristic resistance in case of concrete cone failure	uncracked concrete	N _{Rk,c}	[kN]	-	12,4	17,4	25,8
	cracked concrete	N _{Rk,c}	[kN]	-	8,7	12,2	18,0
Design resistance in case of concrete cone failure	uncracked concrete	N _{Rd,c}	[kN]	-	8,3	11,6	14,3
($\gamma_{M,c}$ =1,5 for M8, M10, M12 $\gamma_{M,c}$ =1,8 for M16)	cracked concrete	N _{Rd,c}	[kN]	-	5,8	8,1	10,0
Characteristic resistance of a single anchor in case of colitting failure	uncracked concrete	N _{Rk,sp}	[kN]	-	12,4	17,4	25,8
	cracked concrete	N _{Rk,sp}	[kN]	-	8,7	12,2	18,0
Design resistance of a single anchor in case of splitting failure	uncracked concrete	N _{Rd,sp}	[kN]	-	8,3	11,6	14,3
($\gamma_{\text{M,sp}}$ =1,5 for M8, M10, M12 $\gamma_{\text{M,sp}}$ =1,8 for M16)	cracked concrete	N _{Rd,sp}	[kN]	-	5,8	8,1	10,0
SHEAR LO	AD - REDUCED EMBEDMENT DEPTH						
Characteristic resistance in case of steel failure		V _{Rk,s}	[kN]	-	19,7	26,6	49,6
Design resistance in case of steel failure (γ_{M_s} =1,31)		V _{Rds}	[kN]	-	15,1	20,3	37,9
Characteristic bending resistance		M ⁰ _{Bks}	[Nm]	-	50,8	89,1	226,4
Design bending resistance $(\gamma_{M_{e}} = 1,31)$		M _{Rd s}	[Nm]	-	38,8	68,0	172,8

* - is not decisive

SQ Ceramic + Stainless steel A4

M8	LE-DA4 Length range: 60 - 155 mm
M10	LE-DA4 Length range: 85 - 155 mm
M2	LE-DA4 Length range: 85 - 165 mm
M16	LE-DA4 Length range: 105 - 165 mm

42

Wedge anchor

LE-DA4

Powerful mechanical anchor for static, quasi-static and seismic loads, designed for setting in both cracked or uncracked concrete.

SUBSTRATES

Normal weight cracked or uncracked concrete , reinforced or unreinforced of strength class from C20/25 to C50/60

BOLT MATERIAL	Carbon steel
CORROSION PROTECTION	SQ Ceramic
HEAD TYPE	Hexagonal nut
WEDGE MATERIAL	Stainless steel A4
NUT AND WASHER Material	SQ Ceramic
INSTALLATION METHOD	Push-through installation
APPLICATION	 Installation of facade steel substructures in environments requiring higher level of corrosion protection Machine and device installation in environments requiring higher level of corrosion protection Installation of railings, handrails, balustrades in environments requiring higher level of corrosion protection. Anchoring of base plates, consoles, cantilevers, cable trays in environments requiring higher level of corrosion protection. Fixing of steel construction to concrete structural components in environments requiring higher level of corrosion protection.

FAST AND EASY INSTALLATION

- Fast and easy installation by hammering the anchor into pre-drilled hole and tightening with required value of torque.
- Immediate loading capacity.
- The diameter of the hole is equal to anchor's bolt diameter.
- · Cold formed steel prevents fracture of anchor's bolt while hammering and tightening.

THE HIGHEST PERFORMANCE PARAMETERS

State of the art machine park and many years of experience contribute to highest performance parameters of products. Our anchors are dedicated as a professional solution for structural fastenings with highest demands.

RESISTANCE UNDER FIRE EXPOSURE R30-R120

Anchor's characteristics regarding resistance to load under fire exposure influence the safety of anchorages during a fire. Value of resistance to load under fire exposure determined for particular fire duration from R30 to R120 allows to design optimal fastenings for each type of applications complying with required fire resistance class.

SEISMIC APPROVAL C1

Anchors have been tested for seismic loads, and thus are approved for use in applications in seismically active areas. Seismic approval allows to design reliable fastenings with increased level of safety.

SELECTION TABLE

	Product code	Anchor diameter and length	Max. usable length	Thread	Head type	Unit pack quantity
		d _w x L _w [mm]	t _{fix1} /t _{fix2} [mm]	[-]	[-]	[pcs.]
			LE-DA4 M8			
м8	LE-DA4-08060	8x60	5 / -	M8	SW-13	100
	LE-DA4-08075	8x75	20 / -	M8	SW-13	100
	LE-DA4-08095	8x95	40 / -	M8	SW-13	50
	LE-DA4-08115	8x115	60 / -	M8	SW-13	50
	LE-DA4-08135	8x135	80 / -	M8	SW-13	50
	LE-DA4-08155	8x155	100 / -	M8	SW-13	50
			LE-DA4 M10			
м10	LE-DA4-10085	10x85	5 / 25	M10	SW-17	50
	LE-DA4-10095	10x95	15 / 35	M10	SW-17	50
	LE-DA4-10105	10x105	25 / 45	M10	SW-17	25
	LE-DA4-10115	10x115	35 / 55	M10	SW-17	25
	LE-DA4-10135	10x135	55 / 75	M10	SW-17	25
	LE-DA4-10155	10x155	75 / 95	M10	SW-17	25
			LE-DA4 M12			
	LE-DA4-12085	12x85	- / 5	M12	SW-19	40
	LE-DA4-12095	12x95	- / 15	M12	SW-19	50
	LE-DA4-12105	12x105	5 / 25	M12	SW-19	50
м12	LE-DA4-12115	12x115	15 / 35	M12	SW-19	40
	LE-DA4-12125	12x125	25 / 45	M12	SW-19	25
	LE-DA4-12145	12x145	45 / 65	M12	SW-19	25
	LE-DA4-12165	12x165	65 / 85	M12	SW-19	25
			LE-DA4 M16			
	LE-DA4-16105	16x105	- / 5	M16	SW-24	25
	LE-DA4-16115	16x115	- / 15	M16	SW-24	25
м16	LE-DA4-16125	16x125	5 / 25	M16	SW-24	25
	LE-DA4-16145	16x145	25 / 45	M16	SW-24	20
	LE-DA4-16165	16x165	45 / 65	M16	SW-24	15

INSTALLATION INSTRUCTIONS

LE-DA4 - TECHNICAL DATA

ETA-20/0641

INSTALLATION PARAMETERS - STANDARD EMBEDMENT DEPTH							
Anchor diameter		d	[mm]	Ø8	Ø10	Ø12	Ø16
Drill hole diameter		d _o	[mm]	8	10	12	16
Effective embedment depth		h _{ef}	[mm]	40	60	70	85
Depth of drill hole			[mm]	52	74	88	106
Diameter of clearance hole in the fixture		d _f ≤	[mm]	10	12	14	18
Installation torque			[Nm]	20	30	50	100
Size of torque wrench			[mm]	13	17	19	24
Minimum thickness of concrete member			[mm]	100	120	160	170
Minimum spacing			[mm]	54	82	109	116
Minimum edge distance			[mm]	54	82	109	116
INSTALLATION PAI	DEPTH						
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure		S _{cr,N}	[mm]	120	180	210	255
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure		C _{cr,N}	[mm]	60	90	105	127,5
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure		S _{cr,sp}	[mm]	200	300	400	425
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure		C _{cr,sp}	[mm]	100	150	200	215
TENSION LOAD - STANDARD EMBEDMENT DEPTH							
Characteristic resistance in case of steel failure		N _{Rk,s}	[kN]	16,2	27,7	38,6	71,9
Design resistance in case of steel failure ($\gamma_{M,s}$ =1,57)		N _{Rd,s}	[kN]	10,3	17,6	24,6	45,8
Characteristic resistance in case of failure by pull-out		N _{Rk,p}	[kN]	*	*	*	*
Design resistance in case of failure by pull-out ($\gamma_{\rm M,p}$ =1,5 for M8, M10, M12 $\gamma_{\rm Y}$	_{и,р} =1,8 for M16)	N _{Rd,p}	[kN]	*	*	*	*
Characteristic registeres is seen of constants seen failure	uncracked concrete	N _{Rk,c}	[kN]	12,4	22,9	28,8	38,6
characteristic resistance in case of concrete cone fanure	cracked concrete	N _{Rk,c}	[kN]	8,7	16,0	20,2	27,0
Design resistance in case of concrete cone failure	uncracked concrete	N _{Rd,c}	[kN]	8,3	15,2	19,2	21,4
(v., =1.5 for M8, M10, M12 v., =1.8 for M16)	oraclead concrete			F 0	10,7	13,4	15,0
$[\gamma_{M,c}]$ =1,5 for M8, M1U, M12 $\gamma_{M,c}$ =1,8 for M16J	CIACKEU CUIICIELE	N _{Rd.c}	[kN]	5,8			
	uncracked concrete	N _{Rd,c}	[kN] [kN]	5,8 12,4	22,9	28,8	38,6
Characteristic resistance of a single anchor in case of splitting failure	uncracked concrete	N _{Rd,c} N _{Rk,sp} N _{Rk,sp}	[kN] [kN] [kN]	5,8 12,4 8,7	22,9 16,0	28,8 20,2	38,6 27,0
Characteristic resistance of a single anchor in case of splitting failure	uncracked concrete cracked concrete uncracked concrete	N _{Rd,c} N _{Rk,sp} N _{Rk,sp} N _{Rd sp}	[kN] [kN] [kN] [kN]	5,8 12,4 8,7 8,3	22,9 16,0 15,2	28,8 20,2 19,2	38,6 27,0 21,4
Characteristic resistance of a single anchor in case of splitting failure Design resistance of a single anchor in case of splitting failure $[\gamma_{M,sp}=1,5 \text{ for } M8, M10, M12 \gamma_{M,sp}=1,8 \text{ for } M16]$	uncracked concrete cracked concrete uncracked concrete cracked concrete	N _{Rd.c} N _{Rk,sp} N _{Rk,sp} N _{Rd,sp} N _{Rd,sp}	[kN] [kN] [kN] [kN] [kN]	5,8 12,4 8,7 8,3 5,8	22,9 16,0 15,2 10,7	28,8 20,2 19,2 13,4	38,6 27,0 21,4 15,0
Characteristic resistance of a single anchor in case of splitting failure Design resistance of a single anchor in case of splitting failure $(\gamma_{M,sp}=1,5 \text{ for } M8, M10, M12 \gamma_{M,sp}=1,8 \text{ for } M16)$ SHEAR LO.	uncracked concrete cracked concrete uncracked concrete cracked concrete cracked concrete AD - STANDARD EMBEDMENT DEPTH	N _{Rd,c} N _{Rk,sp} N _{Rk,sp} N _{Rd,sp}	[kN] [kN] [kN] [kN] [kN]	5,8 12,4 8,7 8,3 5,8	22,9 16,0 15,2 10,7	28,8 20,2 19,2 13,4	38,6 27,0 21,4 15,0
Characteristic resistance of a single anchor in case of splitting failure Design resistance of a single anchor in case of splitting failure $[\gamma_{M,sp}=1,5 \text{ for } M8, M10, M12 \gamma_{M,sp}=1,8 \text{ for } M16]$ SHEAR LO. Characteristic resistance in case of steel failure	uncracked concrete cracked concrete uncracked concrete cracked concrete cracked concrete AD - STANDARD EMBEDMENT DEPTH	N _{Rd.c} N _{Rk,sp} N _{Rk,sp} N _{Rd,sp} V _{Rk,s}	[kN] [kN] [kN] [kN] [kN]	5,8 12,4 8,7 8,3 5,8 12,4	22,9 16,0 15,2 10,7 19,7	28,8 20,2 19,2 13,4 26,6	38,6 27,0 21,4 15,0 49,6
Characteristic resistance of a single anchor in case of splitting failure Design resistance of a single anchor in case of splitting failure $[\gamma_{M,sp}=1,5 \text{ for M8, M10, M12} \gamma_{M,sp}=1,8 \text{ for M16}]$ SHEAR LO Characteristic resistance in case of steel failure Design resistance in case of steel failure $[\gamma_{M,s}=1,31]$	uncracked concrete cracked concrete uncracked concrete cracked concrete cracked concrete AD - STANDARD EMBEDMENT DEPTH	N _{Rd.c} N _{Rk.sp} N _{Rk.sp} N _{Rd.sp} V _{Rd.sp}	[kN] [kN] [kN] [kN] [kN] [kN] [kN]	5,8 12,4 8,7 8,3 5,8 12,4 9,5	22,9 16,0 15,2 10,7 19,7 15,1	28,8 20,2 19,2 13,4 26,6 20,3	38,6 27,0 21,4 15,0 49,6 37,9
$\label{eq:characteristic resistance of a single anchor in case of splitting failure} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	uncracked concrete cracked concrete uncracked concrete cracked concrete cracked concrete AD - STANDARD EMBEDMENT DEPTH	N _{Rd.c} N _{Rk.sp} N _{Rk.sp} N _{Rd.sp} V _{Rk.s} V _{Rk.s} M ⁰ _{Rk.s}	[kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN]	5,8 12,4 8,7 8,3 5,8 12,4 9,5 25,5	22,9 16,0 15,2 10,7 19,7 15,1 50,8	28,8 20,2 19,2 13,4 26,6 20,3 89,1	38,6 27,0 21,4 15,0 49,6 37,9 226,4

* - is not decisive

LE-DA4 - TECHNICAL DATA

ETA-20/0641

KLIMAS

FASTENER TECHNOLOGIES

INSTALLATION PARAMETERS - REDUCED EMBEDMENT DEPTH							
Anchor diameter		d	[mm]	Ø8	Ø10	Ø12	Ø16
Drill hole diameter		d _o	[mm]	-	10	12	16
Effective embedment depth		h _{ef}	[mm]	-	40	50	65
Depth of drill hole		h ₀ ≥	[mm]	-	54	68	86
Diameter of clearance hole in the fixture		d _f ≤	[mm]	-	12	14	18
Installation torque			[Nm]	-	30	50	100
Size of torque wrench		Sw	[mm]	-	17	19	24
Minimum thickness of concrete member			[mm]	-	100	100	130
Minimum spacing			[mm]	-	54	68	88
Minimum edge distance		C _{min}	[mm]	-	54	68	88
INSTALLATION PA	RAMETERS - REDUCED EMBEDMENT I	DEPTH					
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure		S _{cr,N}	[mm]	-	120	150	195
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure		C _{cr,N}	[mm]	-	60	75	97,5
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure			[mm]	-	200	250	325
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure			[mm]	-	100	125	165
TENSION LOAD - REDUCED EMBEDMENT DEPTH							
Characteristic resistance in case of steel failure		N _{Rk,s}	[kN]	-	27,7	38,6	71,9
Design resistance in case of steel failure ($\gamma_{M,s}$ =1,57)			[kN]	-	17,6	24,6	45,8
Characteristic resistance in case of failure by pull-out		N _{Rk,p}	[kN]	-	*	*	*
Design resistance in case of failure by pull-out ($\gamma_{M,p}$ =1,5 for M8, M10, M12 $\gamma_{M,p}$	_{м,р} =1,8 for M16)	$N_{\text{Rd},p}$	[kN]	-	*	*	*
Characteristic resistance in case of concrete cone failure	uncracked concrete	N _{Rk,c}	[kN]	-	12,4	17,4	25,8
	cracked concrete	N _{Rk,c}	[kN]	-	8,7	12,2	18,0
Design resistance in case of concrete cone failure	uncracked concrete	N _{Rd,c}	[kN]	-	8,3	11,6	14,3
$[\gamma_{M,c}=1,5 \text{ for M8, M10, M12} \gamma_{M,c}=1,8 \text{ for M16}]$	cracked concrete	N _{Rd,c}	[kN]	-	5,8	8,1	10,0
Characteristic resistance of a single analysis in case of colitting failure	uncracked concrete	N _{Rk,sp}	[kN]	-	12,4	17,4	25,8
	cracked concrete	N _{Rk,sp}	[kN]	-	8,7	12,2	18,0
Design resistance of a single anchor in case of splitting failure	uncracked concrete	N _{Rd,sp}	[kN]	-	8,3	11,6	14,3
[$\gamma_{\text{M,sp}}$ =1,5 for M8, M10, M12 $\gamma_{\text{M,sp}}$ =1,8 for M16]	cracked concrete	$N_{_{Rd,sp}}$	[kN]	-	5,8	8,1	10,0
SHEAR LC	AD - REDUCED EMBEDMENT DEPTH						
Characteristic resistance in case of steel failure		V _{Rk,s}	[kN]	-	19,7	26,6	49,6
Design resistance in case of steel failure $[\gamma_{M,s}=1,31]$		V _{Rd.s}	[kN]	-	15,1	20,3	37,9
Characteristic bending resistance		M ⁰ _{Bks}	[Nm]	-	50,8	89,1	226,4
Design bending resistance ($\gamma_{A,c}$ =1,31)		M _{nu}	[Nm]	-	38,8	68,0	172,8
- • Wi,S		MU,S			1	· · · ·	

* - is not decisive

Stainless steel A4M8LE-A4
Length range: 60 - 155 mmM10LE-A4
Length range: 85 - 155 mmM2LE-A4
Length range: 85 - 165 mmM16LE-A4
Length range: 105 - 165 mm

46

Wedge anchor

LE-A4

Powerful mechanical anchor for static, quasi-static and seismic loads, designed for setting in both cracked or uncracked concrete.

SUBSTRATES

Normal weight cracked or uncracked concrete , reinforced or unreinforced of strength class from C20/25 to C50/60

BOLT MATERIAL	Stainless steel A4			
CORROSION PROTECTION	Stainless steel A4			
HEAD TYPE	Hexagonal nut			
WEDGE MATERIAL	Stainless steel A4			
NUT AND WASHER Material	Stainless steel A4			
INSTALLATION METHOD	Push-through installation			
APPLICATION	 Installation of facade steel substructures in urban, industrial and also marine environment. Machine and device installation , which are subject to permanently damp internal conditions Installation of railings, handrails, balustrades in both interior and exterior. Anchoring of base plates, consoles, cantilevers in both internal and external conditions. Fixing of steel construction to concrete structural components inside and also outside of buildings. 			

FAST AND EASY INSTALLATION

- Fast and easy installation by hammering the anchor into pre-drilled hole and tightening with required value of torque.
- · Immediate loading capacity.
- · The diameter of the hole is equal to anchor's bolt diameter.
- · Cold formed steel prevents fracture of anchor's bolt while hammering and tightening.

THE HIGHEST PERFORMANCE PARAMETERS

State of the art machine park and many years of experience contribute to highest performance parameters of products. Our anchors are dedicated as a professional solution for structural fastenings with highest demands.

RESISTANCE UNDER FIRE EXPOSURE R30-R120

Anchor's characteristics regarding resistance to load under fire exposure influence the safety of anchorages during a fire. Value of resistance to load under fire exposure determined for particular fire duration from R30 to R120 allows to design optimal fastenings for each type of applications complying with required fire resistance class.

SEISMIC APPROVAL C1

Anchors have been tested for seismic loads, and thus are approved for use in applications in seismically active areas. Seismic approval allows to design reliable fastenings with increased level of safety.

-

SELECTION TABLE

	Product code	Anchor diameter and length	Max. usable length	Thread	Head type	Unit pack quantity
		d _w x L _w [mm]	t_{fix1} / t_{fix2} [mm]	[-]	[-]	[pcs.]
			LE-A4 M8			
	LE-A4-08060	8x60	5/-	M8	SW-13	100
	LE-A4-08075	8x75	20 / -	M8	SW-13	100
0	LE-A4-08095	8x95	40 / -	M8	SW-13	50
MO	LE-A4-08115	8x115	60 / -	M8	SW-13	50
	LE-A4-08135	8x135	80 / -	M8	SW-13	50
	LE-A4-08155	8x155	100 / -	M8	SW-13	50
			LE-A4 M10			
	LE-A4-10085	10x85	5 / 25	M10	SW-17	50
	LE-A4-10095	10x95	15 / 35	M10	SW-17	50
10	LE-A4-10105	10x105	25 / 45	M10	SW-17	25
MIU	LE-A4-10115	10x115	35 / 55	M10	SW-17	25
	LE-A4-10135	10x135	55 / 75	M10	SW-17	25
	LE-A4-10155	10x155	75 / 95	M10	SW-17	25
			LE-A4 M12			
	LE-A4-12085	12x85	- / 5	M12	SW-19	40
	LE-A4-12095	12x95	- / 15	M12	SW-19	50
	LE-A4-12105	12x105	5 / 25	M12	SW-19	50
м12	LE-A4-12115	12x115	15 / 35	M12	SW-19	40
	LE-A4-12125	12x125	25 / 45	M12	SW-19	25
	LE-A4-12145	12x145	45 / 65	M12	SW-19	25
	LE-A4-12165	12x165	65 / 85	M12	SW-19	25
LE-A4 M16						
	LE-A4-16105	16x105	- / 5	M16	SW-24	25
	LE-A4-16115	16x115	- / 15	M16	SW-24	25
м16	LE-A4-16125	16x125	5 / 25	M16	SW-24	25
	LE-A4-16145	16x145	25 / 45	M16	SW-24	20
	LE-A4-16165	16x165	45 / 65	M16	SW-24	15

INSTALLATION INSTRUCTIONS

LE-A4 - TECHNICAL DATA

INSTALLATION PARAMETERS - STANDARD EMBEDMENT DEPTH							
Anchor diameter		d	[mm]	Ø8	Ø10	Ø12	Ø16
Drill hole diameter			[mm]	8	10	12	16
Effective embedment depth		h _{ef}	[mm]	40	60	70	85
Depth of drill hole		h _o ≥	[mm]	52	74	88	106
Diameter of clearance hole in the fixture		d _f ≤	[mm]	10	12	14	18
Installation torque		T _{inst}	[Nm]	20	30	50	100
Size of torque wrench		Sw	[mm]	13	17	19	24
Minimum thickness of concrete member		h _{min}	[mm]	100	120	160	170
Minimum spacing		S _{min}	[mm]	54	82	109	116
Minimum edge distance		C _{min}	[mm]	54	82	109	116
INSTALLATION PAI	RAMETERS - STANDARD EMBEDMENT	DEPTH					
Spacing for ensuring the transmission of the characteristic resistance in tens edge and spacing influence in case of concrete cone failure	sion of a single fastener without	S _{cr,N}	[mm]	120	180	210	255
Edge distance for ensuring the transmission of the characteristic resistance is without edge and spacing influence in case of concrete cone failure	in tension of a single fastener	C _{cr,N}	[mm]	60	90	105	127,5
Spacing for ensuring the transmission of the characteristic resistance in tens edge and spacing influence in case of splitting failure	sion of a single fastener without	S _{cr,sp}	[mm]	200	300	400	425
Edge distance for ensuring the transmission of the characteristic resistance i without edge and spacing influence in case of splitting failure	in tension of a single fastener	C _{cr,sp}	[mm]	100	150	200	215
TENSION LO	DAD - STANDARD EMBEDMENT DEPTH						
Characteristic resistance in case of steel failure		N _{Bks}	[kN]	16,7	28,5	39,7	74,0
Design resistance in case of steel failure ($\gamma_{M,s}$ =1,62)		N _{Rd,s}	[kN]	10,3	17,6	24,5	45,7
Characteristic resistance in case of failure by pull-out		N _{Rk,p}	[kN]	*	*	*	*
Design resistance in case of failure by pull-out ($\gamma_{\rm M,p}$ =1,5 for M8, M10, M12 $\gamma_{\rm f}$	_{M,p} =1,8 for M16)	N _{Rd,p}	[kN]	*	*	*	*
Characteristic resistance in case of concrete cone failure	uncracked concrete	N _{Rk,c}	[kN]	12,4	22,9	28,8	38,6
	cracked concrete	N _{Rk,c}	[kN]	8,7	16,0	20,2	27,0
Design resistance in case of concrete cone failure	uncracked concrete	N _{Rd,c}	[kN]	8,3	15,2	19,2	21,4
$[\gamma_{M,c}^{-1}]$ 1.5 101 Mo, W10, W12 $\gamma_{M,c}^{-1}$ 1.6 101 W105	cracked concrete	N _{Rd,c}		5,8	IU,/	13,4	15,U
Characteristic resistance of a single anchor in case of splitting failure	uncracked concrete	N _{Rk,sp}		12,4 Q 7	22,9 16.0	20,0	30,0 27.0
Design resistance of a single anchor in case of splitting failure uncracked concrete $(\gamma_{M,sp}=1,5 \text{ for M8, M10, M12} \gamma_{M,sp}=1,8 \text{ for M16}) cracked concrete $		N Rk,sp	[kN]	8.3	15.2	19.2	21,0
		N _{Rd,sp}	[kN]	5,8	10,7	13,4	15.0
SHEAR LOAD - STANDARD EMBEDMENT DEPTH							
Characteristic resistance in case of steel failure		V _c	[kN]	12.8	20.3	25.9	48.6
Design resistance in case of steel failure ($y = 1.35$)		HK,S	[kN]	95	15.0	19.2	36.0
		* Rd,s	[Nm]	26.0	52.2	017	2221
		WI ² _{Rk,s}		20,2	UZ,3	ษเ,/	200,1
Design bending resistance ($\gamma_{M,s}$ =1,35)		M _{Rd,s}	[Nm]	19,4	38,8	67,9	172,6

* - is not decisive

KLIMAS FASTENER TECHNOLOGIES

LE-A4 - TECHNICAL DATA

ETA-20/0641

INSTALLATION PARAMETERS - REDUCED EMBEDMENT DEPTH Anchor diameter d [mm] Ø8 Ø10 Ø12 Ø16 10 12 16 Drill hole diameter d [mm] _ Effective embedment depth 40 50 65 h_{ef} [mm] -Depth of drill hole 54 68 [mm] 86 h₀ ≥ Diameter of clearance hole in the fixture d⁺₹ [mm] 12 14 18 _ 30 50 100 Installation torque T_{inst} [Nm] 17 Size of torque wrench S [mm] 19 24 Minimum thickness of concrete member 100 100 130 h [mm] Smin 68 Minimum spacing [mm] _ 54 88 Minimum edge distance C_{min} [mm] _ 54 68 88 INSTALLATION PARAMETERS - REDUCED EMBEDMENT DEPTH Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without 120 S_{cr,N} [mm] 150 195 edge and spacing influence in case of concrete cone failure Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener 60 75 97,5 CcrN [mm] without edge and spacing influence in case of concrete cone failure Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without [mm] 200 250 325 S_{cr,sp} edge and spacing influence in case of splitting failure Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener [mm] 100 125 165 C_{cr,sp} without edge and spacing influence in case of splitting failure **TENSION LOAD - REDUCED EMBEDMENT DEPTH** $\mathsf{N}_{_{\mathsf{R}\underline{k},\underline{s}}}$ Characteristic resistance in case of steel failure [kN] -28,5 39,7 74,0 $N_{\rm Rd,s}$ Design resistance in case of steel failure (γ_{Ms} =1,62) [kN] _ 17,6 24,5 45,7 N_{rk,p} * * * Characteristic resistance in case of failure by pull-out [kN] - $N_{\rm Rd,p}$ * * * Design resistance in case of failure by pull-out ($\gamma_{M,p}$ =1,5 for M8, M10, M12 | $\gamma_{M,p}$ =1,8 for M16) [kN] _ $\mathsf{N}_{_{\mathsf{R}\underline{k},c}}$ uncracked concrete [kN] 12.4 17.4 25.8 Characteristic resistance in case of concrete cone failure cracked concrete N_{Bkc} [kN] 8,7 12,2 18,0 N_{Rd,c} [kN] uncracked concrete 8,3 11,6 14,3 Design resistance in case of concrete cone failure $[\gamma_{Mc}=1,5 \text{ for M8, M10, M12} | \gamma_{Mc}=1,8 \text{ for M16}]$ cracked concrete [kN] 5,8 8,1 10,0 N_{Rd.c} $\mathsf{N}_{_{\mathsf{R}\underline{k}, sp}}$ uncracked concrete [kN] 12,4 17,4 25,8 Characteristic resistance of a single anchor in case of splitting failure $N_{Rk,sp}$ cracked concrete [kN] 8.7 12.2 18.0 N_{Rd,sp} 8,3 11,6 uncracked concrete [kN] 14,3 Design resistance of a single anchor in case of splitting failure ($\gamma_{M,sp}$ =1,5 for M8, M10, M12 | $\gamma_{M,sp}$ =1,8 for M16) N_{Rd.sr} cracked concrete [kN] 5,8 8,1 10,0 SHEAR LOAD - REDUCED EMBEDMENT DEPTH Characteristic resistance in case of steel failure [kN] -20.3 25.9 48.6 V_{Bks} 15,0 Design resistance in case of steel failure (γ_{Ms} =1,35) $\rm V_{\rm Rd,s}$ [kN] 19.2 36.0 Characteristic bending resistance M⁰_{Rk.s} [Nm] 52,3 91.7 233.1 _ ${\sf M}_{\sf Rd,s}$ 38.8 67.9 172,6 Design bending resistance (γ_{Ms} =1,35) [Nm]

* - is not decisive

LSI - Single sleeve steel machine anchor

Product code	Diameter and length	Thread	Head type	
	[mm]	[-]	[-]	
LSI-08040	8x40	M6	SW-10	
LSI-08065	8x65	M6	SW-10	
LSI-08085	8x85	M6	SW-10	
LSI-10050	10x50	M8	SW-13	
LSI-10060	10x60	M8	SW-13	
LSI-10077	10x77	M8	SW-13	
LSI-10097	10x97	M8	SW-13	
LSI-12060	12x60	M10	SW-17	
LSI-12075	12x75	M10	SW-17	
LSI-12100	12x100	M10	SW-17	
LSI-12129	12x129	M10	SW-17	
LSI-16111	16x111	M12	SW-19	
LSI-16147	16x147	M12	SW-19	

LTP - Double sleeve anchor

Droduct code	Diameter and length	Thread	Head type
	[mm]	[-]	[-]
LTP-10100	10x100	M6	SW-10
LTP-10150	10x150	M6	SW-10
LTP-12100	12x100	M8	SW-13
LTP-12120	12x120	M8	SW-13
LTP-12150	12x150	M8	SW-13
LTP-12180	12x180	M8	SW-13
LTP-12200	12x200	M8	SW-13
LTP-12250	12x250	M8	SW-13
LTP-12330	12x330	M8	SW-13
LTP-14100	14x100	M10	SW-17
LTP-14180	14x180	M10	SW-17
LTP-14200	14x200	M10	SW-17
LTP-14250	14x250	M10	SW-17
LTP-14330	14x330	M10	SW-17
LTP-16120	16x120	M12	SW-19
LTP-16200	16x200	M12	SW-19
LTP-16250	16x250	M12	SW-19
LTP-16330	16x330	M12	SW-19
LTP-20180	20x180	M16	SW-24
LTP-20200	20x200	M16	SW-24
LTP-20250	20x250	M16	SW-24

Single sleeve steel anchor with flange nut

Product code	Diameter and length	Thread	Head type	
	[mm]	[-]	[-]	
LM-12080	12x80	M8	SW-13	
LM-14080	14x80	M10	SW-17	

LHP - Sleeve anchor with straight hook

Product code	Diameter and length	Head type
	[mm]	[-]
LHP-10090	10x90	M6
LHP-12120	12x120	M8

LHS - Sleeve anchor with round hook

Product code	Diameter and length	Thread
	[mm]	[-]
LHS-08085	8x85	M5
LHS-10115	10x115	M6
LHS-12130	12x130	M8

LHH - Sleeve anchor with pig tail hook

Product code	Diameter and length	Thread	
	[mm]	[-]	
LHH-12140	12x140	M8	

LHO - Sleeve anchor with eye bolt

Product code	Diameter and length	Thread	
	[mm]	[-]	
LH0-12140	12x140	M8	
LH0-14195	14x195	M10	

KRM - Brass drop-in anchor

Product code	Diameter and length	Thread	Nut size
	[mm]	[-]	[-]
KRM-080624	8x24	M6	SW-10
KRM-100831	10x31	M8	SW-13
KRM-121034	12x34	M10	SW-17
KRM-161241	16x41	M12	SW-19

TSW - Steel drop-in anchor

Code	Diameter and length	Thread	Nut size	
ρισαακία	[mm]	[-]	[-]	
TSW-06	8x25	M6	SW-10	
TSW-08	10x30	M8	SW-13	
TSW-10	12x40	M10	SW-17	
TSW-12	15x50	M12	SW-19	
TSW-16	20x65	M16	SW-24	
TSW-20	25x80	M20	SW-27	

OTSW - Drop-in anchor setting tool

Product code	Code TSW - Steel drop-in anchor		
	[-]		
OTSW-06	TSW-06		
OTSW-08	TSW-08		
OTSW-10	TSW-10		
OTSW-12	TSW-12		
OTSW-16	TSW-16		
OTSW-20	TSW-20		

NDBLS

DBLP

STRONG FOR GENERATIONS

SCREWS

SIMPLE AND QUICK INSTALLATION

- Installation by screwing into a pre-drilled cylindrical hole in concrete
- The special thread of concrete screw cuts an internal thread into the concrete member while setting

- Immediate loading capacity

REUSABILITY

Possibility to be reused for temporary installations.

LOW EXPANSION STRESSES

CE

Concrete screws generate much less expanding forces during installation and load is distributed across a larger area of entire length of the anchor. This feature enable even closer edge and spacing distances.

EUROPEAN TECHNICAL ASSESSMENT ETA-20/0768 / ETA-20/0769

Concrete screw with hex washer head

WDBLS

Concrete hex head screw for quick installation of permanent and temporary fastenings.

ETA-20/0769: WDBLS-06060 / WDBLS-06080 ETA -20/0768: WDBLS-08070 / WDBLS-08080 / WDBLS-10080 WDBLS-10090 / WDBLS-10100 / WDBLS-10110 / WDBLS-10120 WDBLS-10130 / WDBLS-10140

SUBSTRATES

Normal weight cracked or uncracked concrete , reinforced or unreinforced of strength class from C20/25 to C50/60

SCREW MATERIAL	Carbon steel
CORROSION PROTECTION	Galvanized
METHOD OF INSTALLATION	Push-through installation
APPLICATION	 Installation of temporary fastenings, e.g. formwork supports Installation of guard rails, handrails Installation of anchor brackets/ plates Installation of metal profiles Installation of safety barriers Installation of beams and sills Installation of racks Installation of racks Installation of mounting rails and brackets Installation of garden tents

ANCHORING BY MECHANICAL INTERLOCK

Working principal for concrete screws is keying , which distinguishes them from wedge anchors.

SIMPLE AND QUICK INSTALLATION

- Installation by screwing into a pre-drilled cylindrical hole in concrete.
- No specific installation torque value required to create a clamping force to the fixture as anchor is distance controlled. Only visual control needed to ensure full contact of screw head with the fixture.
 Immediate loading capacity.

LOW EXPANSION STRESSES

Concrete screws generate much less expanding forces during installation and load is distributed across a larger area of entire length of the anchor. This feature enable even closer edge and spacing distances.

REUSABILITY

Possibility to be reused for temporary installations

Uaivanizeu Stee

6	WDBLS Length range: 40 - 80 mm
8	WDBLS Length range: 50 - 80 mm
10	WDBLS Length range: 60 - 140 mm

	Product code	Hole diameter	Length of fastener	Thread diameter	Head type	Unit pack quantity	
		[mm]	L _w [mm]	d _w [mm]	[-]	[pcs]	
			WDBLS-6				
	WDBLS-06040*	6	40	7,5	SW-10	100	
6	WDBLS-06060	6	60	7,5	SW-10	100	
	WDBLS-06080	6	80	7,5	SW-10	100	
			WDBLS-8				
	WDBLS-08050*	8	50	9,9	SW-13	50	
8	WDBLS-08060*	8	60	9,9	SW-13	50	
	WDBLS-08070	8	70	9,9	SW-13	50	
	WDBLS-08080	8	80	9,9	SW-13	50	
	WDBLS-10						
	WDBLS-10060*	10	60	12,5	SW-17	50	
	WDBLS-10070*	10	70	12,5	SW-17	50	
	WDBLS-10080	10	80	12,5	SW-17	50	
	WDBLS-10090	10	90	12,5	SW-17	50	
10	WDBLS-10100	10	100	12,5	SW-17	50	
	WDBLS-10110	10	110	12,5	SW-17	50	
	WDBLS-10120	10	120	12,5	SW-17	50	
	WDBLS-10130	10	130	12,5	SW-17	50	
	WDBLS-10140	10	140	12,5	SW-17	50	

* not covered by ETA

INSTALLATION INSTRUCTIONS

CLEAN THE HOLE

SCREW IN THE ANCHOR BY USING IMPACT SCREW DRIVER OR TORQUE WRENCH

CONTROL OF COMPLETE SETTING, FULL Contact of Screw head with the fixture

🛞 C E

Zn

Concrete screw with hex washer head

WDBLS - TECHNICAL DATA

Wkręt-met KLIMAS

🥘 (E

Concrete screw with hex washer head

WDBLS - TECHNICAL DATA

Concrete screw with countersunk head, TX

WDBLP

Concrete countersunk head screw for quick installation of permanent and temporary fastenings.

ETA-20/0769: WDBLP-06080 / WDBLP-06100 / WDBLP-06120 ETA-20/0768: WDBLP-08080 WDBLP-08150 / WDBLP-10090 / WDBLP-10110 / WDBLP-10150

SUBSTRATE

Normal weight cracked or uncracked concrete , reinforced or unreinforced of strength class from C20/25 to C50/60

SCREW MATERIAL	Carbon steel
CORROSION PROTECTION	Galvanized
METHOD OF INSTALLATION	Push-through installation
APPLICATION	 Installation of metal profiles Installation of pipelines and ventilation ducts Installation of handrails and guard rails Installation of temporary fastenings Installation of beams and sills Installation of equipment on construction site Installation of steel decorative elements Installation of mounting rails and brackets Installation of seasonal garden arrangement elements

ANCHORING BY MECHANICAL INTERLOCK

Working principal for concrete screws is keying , which distinguishes them from wedge anchors.

COUNTERSUNK HEAD WITH TX DRIVE

Countersunk head allows flush installation with the fixture and provide solution for visually demanding fastenings with aesthetic finish result.

SIMPLE AND QUICK INSTALLATION

- Installation by screwing into a pre-drilled cylindrical hole in concrete.

 No specific installation torque value required to create a clamping force to the fixture as anchor is distance controlled. Only visual control needed to ensure full contact of screw head with the fixture.
 Immediate loading capacity.

LOW EXPANSION STRESSES

Concrete screws generate much less expanding forces during installation and load is distributed across a larger area of entire length of the anchor. This feature enable even closer edge and spacing distances.

REUSABILITY

Possibility to be reused for temporary installations

	Galvanized steel
6	WDBLP Length range: 60 - 120 mm
8	WDBLP Length range: 80 - 150 mm
10	WDBLP Length range: 90 - 150 mm

	Product code	Hole diameter	Length of fastener	Thread diameter	Head type	Unit pack quantity
		[mm]	L _w [mm]	d _w [mm]	[-]	[pcs]
			WDBLP 6			
	WDBLP-06060*	6	60	7,5	TX-40	100
C	WDBLP-06080	6	80	7,5	TX-40	100
D	WDBLP-06100	6	100	7,5	TX-40	100
	WDBLP-06120	6	120	7,5	TX 40	100
	WDBLP 8					
0	WDBLP-08080	8	80	9,9	TX-45	50
0	WDBLP-08150	8	150	9,9	TX-45	50
	WDBLP 10					
	WDBLP-10090	10	90	12,5	TX-50	50
10	WDBLP-10110	10	110	12,5	TX-50	50
	WDBLP-10150	10	150	12,5	TX-50	50

* not covered by ETA

INSTALLATION INSTRUCTIONS

HAMMER DRILLING - HOLE

DIAMETER d_n

CLEAN THE HOLE

SCREW IN THE ANCHOR By Using Impact Screw Driver

CONTROL OF COMPLETE SETTING, FULL Contact of Screw Head with the fixture

Concrete screw with flat head, TX

WDBLP - TECHNICAL DATA

INSTALLATION PARAMETERS					
Anchor reference size		[mm]	6	8	10
Hole diameter	d _o	[mm]	6	8	10
Effective anchorage depth	h _{ef}	[mm]	42,6	50,6	58,1
Drilled hole depth	h _{o≥}	[mm]	64	75	85
Clearance hole in the fixture	d _{f≤}	[mm]	9	11	13
Wrench size	TX	[mm]	TX-40	TX-45	TX-50
Minimum substrate thickness	h _{min}	[mm]	100	110	130
Minimum spacing	S _{min}	[mm]	40	50	60
Minimum edge distance	C _{min}	[mm]	40	50	60
INSTALLATION PARAMETERS					
Anchor reference size		[mm]	6	8	10
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure	S _{cr,N}	[mm]	128	152	174
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure	C _{cr,N}	[mm]	64	76	87
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure	S _{cr,sp}	[mm]	128	152	174
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure	C _{cr,sp}	[mm]	64	76	87

()

Zn

Concrete screw with flat head, TX

WDBLP - TECHICAL DATA

Concrete screw with pan head, TX

WDBLG

Concrete pan head screw for quick installation of permanent and temporary fastenings.

Normal weight cracked or uncracked concrete , reinforced or unreinforced of strength class from C20/25 to C50/60

SCREW MATERIAL	Carbon steel
CORROSION PROTECTION	Galvanized
METHOD OF INSTALLATION	Push-through installation
APPLICATION	 Installation of metal profiles Installation of pipelines and ventilation ducts Installation of handrails and guard rails Installation of temporary fastenings Installation of beams and sills Installation of equipment on construction site Installation of steel decorative elements Installation of mounting rails and brackets Installation of seasonal garden arrangement elements

ANCHORING BY MECHANICAL INTERLOCK

Working principal for concrete screws is keying, which distinguishes them from wedge anchors.

SIMPLE AND QUICK INSTALLATION

- Installation by screwing into a pre-drilled cylindrical hole in concrete.
- No specific installation torque value required to create a clamping force to the fixture as anchor is distance controlled. Only visual control needed to ensure full contact of screw head with the fixture.

- Immediate loading capacity.

LOW EXPANSION STRESSES

Concrete screws generate much less expanding forces during installation and load is distributed across a larger area of entire length of the anchor. This feature enable even closer edge and spacing distances.

REUSABILITY

Possibility to be reused for temporary installations

Wkręt-met KLIMAS

6

62

WDBLG

Length range: 40 - 80 mm

	-	-				
	Product code	Hole diameter	Length of fastener	Thread diameter	Head type	Unit pack quantity
		[mm]	L _w [mm]	d _w [mm]	[-]	[pcs]
WDBLG 6						
	WDBLG-06040*	6	40	7,5	TX-40	100
6	WDBLG-06060	6	60	7,5	TX-40	100
	WDBLG-06080	6	80	7,5	TX-40	100

* not covered by ETA

INSTALLATION PARAMETERS					
Anchor reference size		[mm]	6		
Hole diameter	d _o	[mm]	6		
Effective anchorage depth	h _{ef}	[mm]	42,6		
Drilled hole depth	h _{o≥}	[mm]	64		
Clearance hole in the fixture	d _{f s}	[mm]	9		
Wrench size	TX	[mm]	TX-40		
Minimum substrate thickness	h _{min}	[mm]	100		
Minimum spacing	S _{min}	[mm]	40		
Minimum edge distance	C _{min}	[mm]	40		
INSTALLATION PARAMETERS					
Anchor reference size		[mm]	6		
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure	S _{cr.N}	[mm]	128		
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure	C _{crN}	[mm]	64		
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure	S _{cr.sp}	[mm]	128		
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure	C _{cr.sp}	[mm]	64		

INSTALLATION INSTRUCTIONS

CONTROL OF COMPLETE SETTING, FULL CONTACT OF SCREW HEAD WITH THE FIXTURE

HAMMER DRILLING - HOLE DIAMETER d_n

CLEAN THE HOLE

SCREW IN THE ANCHOR BY USING IMPACT SCREW DRIVER

🛞 C E

Zn

Concrete screw with pan head, TX

WDBLG - TECHNICAL DATA

AT EACH STAGE OF INVESTMENT

N.F.

DO YOU NEED TECHNICAL SUPPORT?

Contact us: dt@wkret-met.com

TECHNICAL ADVICE AND ENGINEERING SUPPORT ON THE JOBSITE | PULL-OUT TESTS | ASSISTANCE WITH SELECTION OF FASTENERS

Concrete screw with external metric thread

WDBGZ

Concrete screw with external thread for quick installation of permanent and temporary fastenings.

SUBSTRATE

Normal weight uncracked concrete , reinforced or unreinforced of strength class from C20/25 to C50/60

SCREW MATERIAL	Carbon steel
CORROSION PROTECTION	Galvanized
METHOD OF INSTALLATION	Pre-positioned
APPLICATION	 Installation of pipeline routes Installation of channel support systems Installation of ventilation ducts Installation of wire hanging systems for building services (MEP & HVAC) Installation of suspended mounting rails Installation of cable trays

ANCHORING BY MECHANICAL INTERLOCK

Working principal for concrete screws is keying, which distinguishes them from wedge anchors.

EXTERNAL THREAD

The most common use is fixing of support framework for building services (MEP&HVAC) .

SIMPLE AND QUICK INSTALLATION

- Installation by screwing into a pre-drilled cylindrical hole in concrete
- No specific installation torque value required to set anchor into concrete. Installers must only apply
 T_{inst} to create the clamping force on the fixture.
- Immediate loading capacity

LOW EXPANSION STRESSES

Concrete screws generate much less expanding forces during installation and load is distributed across a larger area of entire length of the anchor. This feature enable even closer edge and spacing distances.

REUSABILITY

Possibility to be reused for temporary installations

6

66

WDBGZ

Length range: 35 - 55 mm

	Product code	Hole diameter	Length of fastener	Thread diameter	Metric thread	Wrench size	Unit pack quantity
		[mm]	L _w [mm]	d _w [mm]	[-]	[-]	[pcs]
WDBGZ 6							
6	WDBGZ-06035*	6	35	7,5	M8	SW-10	100
	WDBGZ-06055*	6	55	7,5	M8	SW-10	100

* not covered by ETA

INSTALLATION PARAMETERS						
Anchor reference size		[mm]	6			
Hole diameter	d _o	[mm]	6			
Effective anchorage depth	h _{ef}	[mm]	42,6			
Drilled hole depth	h _{0 ≥}	[mm]	64			
Installation torque	T _{inst}	[Nm]	20			
Wrench size	SW	[mm]	SW-10			
Minimum substrate thickness	h _{min}	[mm]	100			
Minimum spacing	S _{min}	[mm]	40			
Minimum edge distance	C _{min}	[mm]	40			
INSTALLATION PARAMETERS						
Anchor reference size		[mm]	6			
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure	S _{cr,N}	[mm]	128			
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure	C _{cr.N}	[mm]	64			
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure	S _{cr.sp}	[mm]	128			
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure	C _{cr,sp}	[mm]	64			

INSTALLATION INSTRUCTIONS

HAMMER DRILLING - HOLE Diameter d_n CLEAN THE HOLE

CONTROL OF COMPLETE SETTING , FULL CONTACT of screw head with the surface of concrete member

Concrete screw with external metric thread

WDBGZ - TECHNICAL DATA

TENSION LOAD (indicative values)					
Anchor reference size	-	[mm]	6		
Characteristic resistance in case of steel failure	N _{rk,s}	[kN]	19,7		
Design resistance in case of steel failure	N _{Rd.s}	[kN]	14,1		
Characteristic registeres in sees of null out failure	uncracked concrete	N _{Rk,p}	[kN]	5,00	
cracked concrete		N _{Rk,p}	[kN]	-	
Design resistance in case of null-out failure	uncracked concrete	N _{Rd,p}	[kN]	3,33	
	cracked concrete	N _{Rd,p}	[kN]	-	
Characteristic resistance in case of concrete cone	uncracked concrete	N _{Rk,c}	[kN]	13,7	
failure	cracked concrete	N _{Rk,c}	[kN]	-	
Nesion resistance in case of concrete cone failure	uncracked concrete	N _{Rd,c}	[kN]	9,1	
	cracked concrete	N _{Rd,c}	[kN]	-	
	SHEAR LOAD (indicative values)				
Anchor reference size		-	[mm]	6	
Characteristic resistance in case of steel failure	V _{Rk,s}	[kN]	7,9		
Design resistance in case of steel failure	V _{Rd,s}	[kN]	5,3		
Characteristic bending resistance	$M^0_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	[Nm]	15,9		
Design bending resistance	$M_{Rd,s}$	[Nm]	10,6		
Characteristic resistance in case of concrete pry-out	uncracked concrete	V _{Rk,cp}	[kN]	13,7	
failure	cracked concrete	V _{Rk,cp}	[kN]	-	
Decign registrance in case of concrete pry-out failure	uncracked concrete	V _{Rd,cp}	[kN]	9,1	
Uesign resistance in case of concrete pry-out failure cracked concrete		V _{Rd,cp}	[kN]	-	

STRONG FOR GENERATIONS

QUALITY INCLUDED IN THE PROCESS

Our laboratory is equipped with measuring microscope, X-ray spectrometer, salt spray chamber, load capacity testing machine, Vickers microhardness tester, Rockwell hardness tester, torque converters, permascope and a number of other equipment, which allow us to:

- · check and control paint and zinc coat thickness;
- · check resistance of protective coating to highly corrosive environments;
- · check hardness of the screw surface and screw core, thickness of carburized layer;
- · measure the torque required for a particular screw to be installed;
- · test the pull-out strength;
- measure rigidity of the support washer;
- measure installation time of screws;
- · and many others.

KIIM

FASTENER TECHNOLO

Concrete screw with internal metric thread

WDBGW

Concrete screw with internal thread for quick installation of permanent and temporary fastenings.

SUBSTRATES

Normal weight cracked or uncracked concrete, reinforced or unreinforced of strength class from C20/25 to C50/60

SCREW MATERIAL	Carbon steel			
CORROSION PROTECTION	Galvanized			
METHOD OF INSTALLATION	Pre-positioned			
APPLICATION	 Installation of pipeline routes Installation of channel support systems Installation of ventilation ducts Installation of wire hanging systems for building services (MEP & HVAC) Installation of suspended mounting rails Installation of cable trays 			

ANCHORING BY MECHANICAL INTERLOCK

Working principal for concrete screws is keying , which distinguishes them from wedge anchors.

STEPPED M8 AND M10 INTERNALLY THREADED HEAD

Allows direct fastening of threaded rods.

SIMPLE AND QUICK INSTALLATION

- Installation by screwing into a pre-drilled cylindrical hole in concrete
- No specific installation torque value required to set anchor into concrete. Installers must only apply
 T_{inst} to create the clamping force on the fixture.
- Immediate loading capacity

LOW EXPANSION STRESSES

Concrete screws generate much less expanding forces during installation and load is distributed across a larger area of entire length of the anchor. This feature enable even closer edge and spacing distances.

REUSABILITY

Possibility to be reused for temporary installations

6

70

WDBGW

Length range: 35 - 57 mm

	Product code	Hole diameter	Length of fastener	Thread diameter	Metric thread	Wrench size	Number of pieces in a box
		[mm]	L _w [mm]	d _w [mm]	[-]	[-]	[pcs]
WDBGW 6							
6	WDBGW-06035*	6	35	7,5	M8/M10	SW-13	100
	WDBGW-06057	6	57	7,5	M8/M10	SW-13	100

* not covered by ETA

INSTALLATION PARAMETERS					
Anchor reference size		[mm]	6		
Hole diameter	d _o	[mm]	6		
Effective anchorage depth	h _{ef}	[mm]	42,6		
Drilled hole depth	h _{o ≥}	[mm]	64		
Installation torque	T _{inst}	[Nm]	20		
Wrench size	Sw	[mm]	SW-13		
Minimum substrate thickness	h _{min}	[mm]	100		
Minimum spacing	S _{min}	[mm]	40		
Minimum edge distance	C _{min}	[mm]	40		
INSTALLATION PARAMETERS					
Anchor reference size		[mm]	6		
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure	S _{cr.N}	[mm]	128		
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of concrete cone failure	C _{cr,N}	[mm]	64		
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure	S _{cr.sp}	[mm]	128		
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing influence in case of splitting failure	C _{cr.sp}	[mm]	64		

INSTALLATION INSTRUCTIONS

HAMMER DRILLING - HOLE Diameter d_n

CLEAN THE HOLE

SCREW IN THE ANCHOR By Using impact screw driver

CONTROL OF COMPLETE SETTING , FULL CONTACT of screw head with the surface of concrete member

🛞 C E

Zn

Concrete screw with internal metric thread

WDBGW - TECHNICAL DATA

cracked concrete

V_{Rd,cp}

[kN]

6,4

STRONG FOR GENERATIONS

<image>

- · Automated picking and packing processes.
- Most popular packaging: unit packages, bags, blisters.
- High performance

HIGH STORAGE WAREHOUSE 24000 PALLET PLACE

STRONG FOR GENERATIONS

of windows and doors

WHO / WHOW

METAL ANCHORS Screws and fasteners for installation

QUICK INSTALLATION

Screws for installation of windows and doors facilitate fastenings and enable efficient series fixings. Compared to expansion type of fasteners, the installation time is reduced.

NO TENSILE STRESS GENERATED DURING INSTALLATION

Screws enable to secure the frame to the supporting wall without generating tensile force causing the frame to be pulled against the substrate.

FULL THREAD

Guarantees to maintain secure and reliable fastening while keeping also appropriate distance between the frame and the substrate.

NOTCH ON THREAD

Special notch on thread reduces screwing resistance while setting.

				external sectors		
	SMM	Metal hammer drive anchor	76	KRW	Hammer-in expanding me	etal anchor 77
	ø6	Length: 40 - 65 mm	Galvanized steel	ø6	Length: 35 - 65 mm	Galvanized steel
	KMG	Hammer-in anchor for AAC su	bstrates 78	LO	Metal frame anchor	79
M5	M6 M8 M10	Length: 30 - 60 mm	Galvanized steel	ø10	Length: 72 - 202 mm	Galvanized steel
	WHO Fran	ne screw with flat head		WHOW Fr	ame screw with cylindrical hea	ad 81
	a75 Len	11h • 42 - 212 mm	Galvanized steel	a75	enath: 42 - 212 mm	Galvanized steel
	Leni		ourrainizeu steer		Myu. 72 212 11111	Garvanizgu Steer

Metal hammer drive anchor

SMM

Universal metal hammer-in anchor designed for fixing of thin metal elements, profiles in drywall systems, metal flashings.

SUBSTRATES

Concrete

Solid clay brick

NAIL MATERIAL	Carbon steel				
CORROSION PROTECTION	Galvanized				
SLEEVE MATERIAL	Alloy Zn/Al				
INSTALLATION METHOD	Push-through installation				
APPLICATION	 Fixing cable routes to solid substrates. Fixing apartment furnishing elements to solid substrates. Used as a substitute for plastic hammer-drive fixings in applications with fire rating required. 				

Znai expansion sleeve + steel nail

High resistance under fire exposure, class A1 fire rating (non-combustible).

HAMMER-IN INSTALLATION DIAMETER 6 MM

Used as a substitute for plastic hammer-drive fixings in applications with fire rating required.

REDUCTION OF INSTALLATION TIME

Fast and easy push-through installation.

Hammer-in expanding metal anchor

KRW

Anchor designed for fixing of suspended ceiling systems to concrete substrate.

ITB-KOT-2018/0463

SUBSTRATES

Concrete

Solid clay brick

ANCHOR MATERIAL	Carbon steel				
CORROSION PROTECTION	Galvanized				
INSTALLATION METHOD	Push-through installation				
APPLICATION	 Fixing cable routes to solid substrates Fixing of suspended ceilings Fixings apartment furnishing elements to solid substrates Used as a substitute for plastic hammer-drive fixings in applications with fire rating required. 				

STEEL ANCHOR

High resistance under fire exposure, class A1 fire rating (non-combustible).

HAMMER-IN INSTALLATION DIAMETER 6 MM

Used as a substitute for plastic hammer-drive fixings in applications with fire rating required.

REDUCTION OF INSTALLATION TIME

Fast and easy push-through installation.

APPROVED FOR CRACKED CONCRETE

Approved for applications requiring fastening into cracked zone of concrete slab e.g. suspended ceiling fixing.

Hammer-in anchor for AAC substrates

KMG

Universal metal hammer-in anchor utilised as expansion element combined with screw-in expansion pin [screws, screw-in hooks, etc.].

SUBSTRATES

Autoclaved aerated concrete

MATERIAL	Carbon steel
CORROSION PROTECTION	Galvanized
INSTALLATION METHOD	Pre-positioned installation
APPLICATION	Universal metal hammer-in anchor utilised as expansion element combined with screw-in expansion pin (screws, screw-in hooks, etc.)

RIBBED DESIGN

The external teeth expand in the building material, thus ensuring a high load-bearing capacity. The ribbed design guide the screw securely.

STEEL ANCHOR

High resistance under fire exposure , class A1 fire rating (non-combustible).

INSTALLATION OF PROFILES FOR DRYWALL SYSTEMS

Use in fastening of profiles for drywall systems into AAC substrate.

Metal frame anchor

Universal metal fastener for fixing window and door frames for use with plastic cover in a variety of colours.

ITB-KOT-2017/0307

SUBSTRATES

Solid clay brick

Hollow clay brick

Hollow silicate block

MATERIAL	Carbon steel
CORROSION PROTECTION	Galvanized
METHOD OF INSTALLATION	Push-through installation
APPLICATION	Installation of window and door frames

SPECIAL DESIGN OF STEEL SLEEVE

Provide ideal expansion simultaneously in the substrate material and also in the fixture.

TWO EXPANSION ZONES

Guarantees to maintain secure and reliable fastening while keeping also appropriate distance between the frame and the substrate.

COUNTERSUNK HEAD WITH PZ DRIVE

Enables the screw to be screwed in with commonly available PZ drive and ensures flush installation with the frame.

POSSIBILITY OF USING PLASTIC COVERS

Aesthetic finish result is achieved by using of plastic cover in appropriate colour.

Frame screw with flat head

WHO

Frame screw with flat head for window and door installation.

Concrete

Solid clay brick

Autoclaved aerated concrete

MATERIAL	Carbon steel
CORROSION PROTECTION	Galvanized
INSTALLATION METHOD	Push-through installation
APPLICATION	Installation of window and door frames made from \ensuremath{PVC}

QUICK INSTALLATION

Screws for installation of windows and doors facilitate fastenings and enable efficient series fixings. Compared to expansion type of fasteners the installation time is reduced.

NO TENSILE STRESS GENERATED DURING INSTALLATION

Screws enable to secure the frame to the supporting wall without generating tensile force causing the frame to be pulled against the substrate.

FULL THREAD

Guarantees to maintain secure and reliable fastening while keeping also appropriate distance between the frame and the substrate.

TX DRIVE

TX drive provide excellent holding of bit and efficient torque transfer. Head with milling ribs ensures optimal and smooth countersink in the frame.

NOTCH ON THREAD

Special notch on thread reduces screwing resistance while setting.

The screw can be easily removed without leaving any parts in the substrate.

	Galvanized steel				
_	WHO				

Ø**7,5** Length range: 42 - 212 mm

Frame screw with cylindrical head

WHOW

Frame screw with cylindrical head for window and door installation.

ITB-KOT-2017/0308

Concrete

Solid clay brick

Autoclaved aerated concrete

MATERIAL	Carbon steel
CORROSION PROTECTION	Galvanized
INSTALLATION METHOD	Push-through installation
APPLICATION	Installation of window and door frames made from wood

QUICK INSTALLATION

Screws for installation of windows and doors facilitate fastenings and enable efficient series fixings. Compared to expansion type of fasteners the installation time is reduced.

NO TENSILE STRESS GENERATED DURING INSTALLATION

Screws enable to secure the frame to the supporting wall without generating tensile force causing the frame to be pulled against the substrate.

FULL THREAD

Guarantees to maintain secure and reliable fastening while keeping also appropriate distance between the frame and the substrate.

TX DRIVE

TX drive provide excellent holding of bit and efficient torque transfer. Cylindrical head is recommended to use for wooden frames as enable concealed installation with reliability of fastening.

NOTCH ON THREAD

Special notch on thread reduces screwing resistance while setting.

The screw can be easily removed without leaving any parts in the substrate.

Wkręt-met KLIMAS

Ø**7,5** WHOW Length range: 42 - 212 mm

POXY STYRENER

+30-+15 *

+25 - +35 2 +20 - +35 2 +15 - +35 2

5340 MR

Wkręt-met

TYPE ANCHOR FOR USE IN CRACKED AND UNCRACKED

CONCRETE POXY - FOR EXTREME LOADS

CE

STRONG FOR GENERATIONS

Pure epoxy injection anchor FOR EXTREME LOADS

WCF-E3-585 - MOUNT EVEREST

SEISMIC APPROVAL GI/GZ

Anchors have been tested for seismic loads, and thus are approved for use in applications in seismically active areas. Seismic approval allows to design reliable fastenings with increased level of safety.

INSTALLATION IN CRACKED CONCRETE

Approved for fastening threaded rods and rebars in tension zone of reinforced concrete member. Tension zone, also called cracked zone might occur in all main structural concrete members e.g. beams , slabs, columns.

HIGH LOAD-BEARING PARAMETERS

It is ideally suited for highest load/heavy duty structural anchoring. Offer highest performance for most demanding applications.

STYRENE-FREE

Being free of styrene is well suited and safe for use indoors and in confined spaces.

SEISMIC APPROVAL C1/C2

		<image/>		
MOUNT EVEREST	NANDA KOT	MAKALU	ELBRUS	MONT BLANC
WCF-E3-585 Pure epoxy	WOUNT EVERESTNANDA KUTWCF-E3-585WCF-XS-410Pure epoxyWCF-XS-C-410HybridHybrid		WCF-VESF-300 WCF-VESF-410 WCF-VESF-E-300 WCF-VESF-E-410 Vinylester	WCF-PESF-300 WCF-PESF-E-300 WCF-PESF-C-300 WCF-PESF-E-410 Polyester
84	88	92	98	100
ACCESSORIES				103-110
		Pis		
PGO / PGO5 / PGO8 / PGOA2 / PG Threaded rods for injection and	GOA4 KF	PG/ KPGA2 for injection anchors	NM / NM8 Nuts	PON POD Washers Washers
DCF-30 Injecti	0 / DCF-410 / DCF-585 on anchor dispensers	Nylon mes in holl	TSN h sleeves for fastening ow base materials	TSM Metal mesh sleeve for hollow materials
MCF Mixing nozzle	PCF Hole cleaning	pump	SCF Hole cleaning brush	TCF Resin stopper
SCF-H / SCF-E / SCF-I Deep hole cleaning bru	B Ish	MCF-P Extension h	ose	MCF-PK Extension tube
			8	3 Wkręt-met KLIMAS

KLIMAS FASTENER TECHNOLOGIES

CHEMICAL ANCHORS

84

MOUNT EVEREST - Epoxy injection anchor - FOR HEAVY LOADS

Pure epoxy two-component 3:1 ratio bonded injection anchor. For professional use in highest load/heavy duty structural anchoring. Offer highest performance for most demanding applications.

ETA-17/0234 ETA-15/0681 for PIR calculations in accordance with EC2 EN 1992-1-1

SUBSTRATES

Cracked and uncracked concrete (option 1) C20/25 to C50/60.
 Reinforced and non-reinforced concrete.

- Dry, wet concrete and flooded holes (Cat 2).
- Post-installed rebar connections calculation in accordance with EC2 EN 1992-1-1.

Strength class of concrete from C12/15 to C50/60.

INSTALLATION Temperature Range	5°C to 40°C
CARTRIDGE SIZE	585 ml
APPROVED Steel Elements	 Threaded rods M8-M30 made of galvanized steel grades: 4.6, 5.8, 8.8, 10.9; Threaded rods M8-M30 made of stainless steel grades: A2-70, A4-70, A4-80; Threaded rods M8-M30 made of HCR steel: 1.4529, 1.4565; Galvanized or hot-dip galvanized rods and thermodiffusion; Rebars: Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32, grade: B,C; Rebars (post installed in accordance with TR023/EC2): Ø8, Ø10, Ø12, Ø14, Ø16, Ø20, Ø25, Ø28, Ø32, class: B, C;
APPLICATIONS	 Anchoring of heavy steel constructions to concrete structural components Anchoring of base plates, brackets, consoles in highest load applications with most challenging conditions Strengthening and reinforcement of concrete members in existing superstructure (old buildings restoration, bridges renovation, etc.) Wide range of post-installed rebar connections including anchorage and overlap joint applications (e.g. slab to slab at support, overlap joint at a foundation of column or wall, etc.) Design method according to EN 1992-4:2018 and EC2 EN 1992-1-1

SEISMIC APPROVAL C1/C2

Anchors have been tested for seismic loads, and thus are approved for use in applications in seismically active areas. Seismic approval allows to design reliable fastenings with increased level of safety.

HIGH LOAD-BEARING PARAMETERS

It is ideally suited for highest load/heavy duty structural anchoring. Offer highest performance for most demanding applications.

STYRENE-FREE

Being free of styrene is well suited and safe for use indoors and in confined spaces.

INSTALLATION IN CRACKED CONCRETE

Approved for fastening threaded rods and rebars in tension zone of reinforced concrete member. Tension zone, also called cracked zone might occur in all main structural concrete members e.g. beams , slabs, columns.

MOUNT EVEREST (WCF-E3) - Epoxy injection anchor - FOR HEAVY LOADS (THREADED RODS)

TABLE 1. SELECTION TABLE

	Code	[°C]	Pcs.
585ml	WCF-E3-585	5 to 40	12

TABLE 2. INSTALLATION PARAMETERS - THREADED RODS

Parameters			THREADED ROD SIZE							
			M8	M10	M12	M16	M20	M24	M27	M30
Threaded rod diameter	d	[mm]	8	10	12	16	20	24	27	30
Hole diameter	d _o	[mm]	10	12	14	18	22	26	30	35
Min. embedment depth	h _{ef.min}	[mm]	60	60	70	80	90	96	108	120
Min. hole depth	h _{0.min}	[mm]	65	65	75	85	95	101	113	125
Min. edge distance	C _{min}	[mm]	40	40	40	40	50	50	50	60
Min. spacing	S _{min}	[mm]	40	40	40	40	50	50	50	60
Max. embedment depth	h _{ef.max}	[mm]	160	200	240	320	400	480	540	600
Max. hole depth	h _{0.max}	[mm]	165	205	245	325	405	485	545	605
Min. base material thickness h _{min} [mm]		h _{ef} +	h _{ef} +30 mm ≥ 100 mm			h_{ef} +2*d ₀				
Installation torque	T _{inst}	[Nm]	10	20	40	80	120	160	180	200

Substrate temp [°C]	5	5 to 10	10 to 15	15 to 20	20 to 25	25 to 30	30 to 35	35 to 40
Max. working time [min.]	300	150	40	25	18	12	8	6
Minimum curing time [h]	24	24	18	12	8	6	4	2

MOUNT EVEREST (WCF-E3) - Epoxy injection anchor - FOR HEAVY LOADS (REBARS)

TABLE 1. SELECTION TABLE

	Code	[°C]	Pcs.		
585ml	WCF-E3-585	5 to 40	12		

TABLE 2. INSTALLATION PARAMETERS - REBARS ACCORDING TO THE EN-1992-4:2018

Damaratan	Parameters			THREADED ROD SIZE								
raidilities			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32			
Rebar diameter	d	[mm]	8	10	12	16	20	25	32			
Hole diameter	d ₀	[mm]	12	14	16	20	25	32	40			
Min. embedment depth	h _{ef,min}	[mm]	60	60	70	80	90	100	128			
Min. hole depth	h _{o,min}	[mm]	65	65	75	85	95	105	133			
Min. edge distance	C _{min}	[mm]	40	40	40	40	50	50	70			
Min. spacing	S _{min}	[mm]	40	40	40	40	50	50	70			
Max. embedment depth	h _{ef,max}	[mm]	160	200	240	320	400	500	640			
Max. hole depth	h _{0,max}	[mm]	165	205	245	325	405	505	645			
Min. base material thickness	h _{min}	[mm]	h _{ef} +30 mm ≥ 100 mm h _{ef} +2*d _n									

Substrate temp [°C]	5	5 to 10	10 to 15	15 to 20	20 to 25	25 to 30	30 to 35	35 to 40
Max. working time [min.]	300	150	40	25	18	12	8	6
Minimum curing time [h]	24	24	18	12	8	6	4	2

MOUNT EVEREST (WCF-E3) - Epoxy injection anchor - FOR HEAVY LOADS (POST-INSTALLED REBAR CONNECTION)

TABLE 1. SELECTION TABLE

	Code	[°C]	Pcs.
585ml	WCF-E3-585	5 to 40	12

TABLE 2. INSTALLATION PARAMETERS - POST-INSTALLED REBAR CONNECTIONS

Parameters			THREADED ROD SIZE								
			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Rebar diameter	d	[mm]	8	10	12	14	16	20	25	28	32
Hole diameter	d ₀	[mm]	12	14	16	18	20	25	32	35	40
Min. anchorage length - C20/25	l _{b,min}	[mm]	113	142	170	198	227	284	354	397	454
Min. anchorage length - C50/60	l _{b,min}	[mm]	100	100	120	140	160	200	250	280	320
Minimum overlap length	I _{0,min}	[mm]	200	200	200	210	240	300	375	420	480
Max. installation length	max	[mm]	400	500	600	700	800	1000	1000	1000	1000

Values have been calculated for good bond conditions and $\alpha_{\rm g}{=}1{,}0$

Minimum anchorage length for PIR applications: I_bmin=max(0,3*I_bmid:10*d;100 mm)

Substrate temp [°C]	5	5 to 10	10 to 15	15 to 20	20 to 25	25 to 30	30 to 35	35 to 40
Max. working time [min.]	300	150	40	25	18	12	8	6
Minimum curing time [h]	24	24	18	12	8	6	4	2

KLIMAS FASTENER TECHNOLOGIES

CHEMICAL ANCHORS

	NANDA KOT	
410 ml	5°C to 30°C	WCF-XS-400
410 ml	15°C to 40°C	WCF-XS-E-400*
410 ml	0°C to 20°C	WCF-XS-C-400*

*product available on request

Wkręt-met KLIMAS

88

NANDA KOT - Hybrid injection anchors - FOR HEAVY AND MEDIUM LOADS

WCF-XS / WCF-XS-E WCF-XS-C

Hybrid bonded injection anchor system offering very high performance in both cracked & uncracked concrete, along with a very good performance under seismic conditions (C1&C2). For professional use in heavy and medium duty applications.

SEISMIC APPROVAL C1/C2

Anchors have been tested for seismic loads, and thus are approved for use in applications in seismically active areas. Seismic approval allows to design reliable fastenings with increased level of safety.

HIGH LOAD-BEARING PARAMETERS

Being free of styrene is well suited and safe for use indoors and in confined spaces.

STYRENE-FREE

Being free of styrene is well suited and safe for use indoors and in confined spaces.

INSTALLATION IN CRACKED CONCRETE

Approved for fastening threaded rods in tension zone of reinforced concrete member. Tension zone, also called cracked zone might occur in all main structural concrete members e.g. beams , slabs, columns.

NANDA KOT (WCF-XS / WCF-XS-E / WCF-XS-C) - Hybrid injection anchors - FOR HEAVY AND MEDIUM LOADS (THREADED RODS)

TABLE 1. SELECTION TABLE

	Code	[°C]	Pcs.
	WCF-XS-410	5 to 30	12
410 ml	WCF-XS-E-410*	15 to 40	12
	WCF-XS-C-410*	0 to 20	12

*product available on request

TABLE 2. INSTALLATION PARAMETERS - THREADED RODS

	Parameters			THREADED ROD SIZE							
	ו מו מוווכנכו ס			M8	M10	M12	M16	M20	M24	M27	M30
Threaded re	od diameter	d	[mm]	8	10	12	16	20	24	27	30
Hole diame	ter	d ₀	[mm]	10	12	14	18	22	26	30	35
_ +	Min. embedment depth	h _{ef,min}	[mm]	64	80	96	128	160	192	216	240
mum dmen 1 = 8d	Min. hole depth	h _{0,min}	[mm]	69	85	101	133	165	197	221	245
Minii ember deptł	Min. edge distance	C _{min}	[mm]	35	40	50	65	80	96	110	120
Ű	Min. spacing	S _{min}	[mm]	35	40	50	65	80	96	110	120
mum dment = 20d	Max. embedment depth	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Maxii embec depth	Max. hole depth	h _{0,max}	[mm]	165	205	245	325	405	485	545	605
Min. base material thickness h _{min} [mm]		[mm]		h _{ef} +30 mm	ı ≥ 100 mm			h _{ef} +	2*d ₀		
Installation	torque	T _{inst}	[Nm]	[Nm] 10 20 40 80 150		200	240	275			

TABLE 3. CURING TIME

Substrate temp [°C]	Resin type	0 to 5	5 to 10	10 to 15	15 to 20	20 to 25	25 to 30	30 to 35	35 to 40
Maria di su	XS	-	10	8	6	5	4	-	-
Maximum working	XS-E	-	-	-	15	10	7,5	5	3,5
ume (min.)	XS-C	10	5	5	5	1,7*	-	-	-
Minimum curing time [min.]	XS	-	145	85	75	50	40	-	-
	XS-E	-	-	-	300	145	85	50	40
	XS-C	75	50	50	50	20*	-	-	-

 * applies only to the temperature of + 20 $^{\circ}$ C

 $\mathbf{h}_{0,\min}/\mathbf{h}_{0,\max}$ $\mathbf{h}_{\rm ef.min}/\mathbf{h}_{\rm ef.r}$

h

C / C_{min}

s / s_{min}

Ť

NANDA KOT (WCF-XS / WCF-XS-E / WCF-XS-C) - Hybrid injection anchors - FOR HEAVY AND MEDIUM LOADS (REBARS)

TABLE 1. SELECTION TABLE

K

FASTENER TECHNOLOGIES

	Code	[°C]	Pcs.
	WCF-XS-410	5 to 30	12
410ml	WCF-XS-E-410*	15 to 40	12
	WCF-XS-C-410*	0 to 20	12

*product available on request

TABLE 2. INSTALLATION PARAMETERS - REBARS ACCORDING TO THE EN-1992-4:2018

Substrate temp [°C]	Resin type	0 to 5	5 to 10	10 to 15	15 to 20	20 to 25	25 to 30	30 to 35	35 to 40
Max. working time	XS	-	10	8	6	5	4	-	-
	XS-E	-	-	-	15	10	7,5	5	3,5
[[[]]]	XS-C	10	5	5	5	1,7*	-	-	-
Minimum ouring time	XS	-	145	85	75	50	40	-	-
[min.]	XS-E	-	-	-	300	145	85	50	40
	XS-C	75	50	50	50	20*	-	-	-

 * applies only to the temperature of + 20 $^{\circ}$ C

NANDA KOT (WCF-XS / WCF-XS-E / WCF-XS-C) - Hybrid injection anchors - FOR HEAVY AND MEDIUM LOADS (POST-INSTALLED REBAR CONNECTION)

TABLE 1. SELECTION TABLE

		Code	[°C]	Pcs.
	410 ml	WCF-XS-410	5 to 30	12
		WCF-XS-E-410*	15 to 40	12
		WCF-XS-C-410*	0 to 20	12

*product available on request

Lunia / Lust

TABLE 2. INSTALLATION PARAMETERS - POST INSTALL REBAR CONNECTIONS

Devenentere	THREADED ROD SIZE										
i didileters				Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Rebar diameter	d	[mm]	8	10	12	14	16	20	25	28	32
Hole diameter	d ₀	[mm]	12	14	16	18	20	25	32	35	40
Min. anchorage length - C20/25	l _{b,min}	[mm]	113	142	170	198	227	284	354	397	454
Min. anchorage length - C50/60	l b.min	[mm]	100	100	120	140	160	200	272	338	454
Minimum overlap length	I _{0,min}	[mm]	200	200	200	210	240	300	375	420	480
Max. installation length	max	[mm]	400	500	600	700	800	1000	1000	1000	1000

Values have been calculated for good bond conditions and $\alpha_{\rm g}{=}1{,}0$

Minimum anchorage length for PIR applications: I_bmin=max(0,3*1_bmqi)*10*d;100 mm)

Minimum overlap length for PIR applications: $I_{0,min} = max(0,3^{*}\alpha_{6}^{*}I_{brad}^{*}15^{*}d;200 \text{ mm})$

TABLE 3. CURING TIME (POST INSTALL REBAR CONNECTIONS)

Substrate temp [°C]	Resin type	0 to 5	5 to 10	10 to 15	15 to 20	20 to 25	25 to 30	30 to 35	35 to 40
Mary condition times	XS	-	10	8	6	5	4	-	-
Max. working time	XS-E	-	-	-	15	10	7,5	5	3,5
[IIIII.]	XS-C	10	5	5	5	1,7*	-	-	-
Minimum ouring time	XS	-	145	85	75	50	40	-	-
Minimum curing time	XS-E	-	-	-	300	145	85	50	40
[IIIIII.]	XS-C	75	50	50	50	20*	-	-	-

* applies only to the temperature of + 20 ° C

Wkręt-met KLIMAS METAKRYLANOWA - DO DUŻYC DO STOSOWA IŚREDNICH OBCIĄŻEŃ, W BETONIE ZARYSOWANYM I NIEZARYSOWANYN TYPE ANCHOR FOR USE IN NON-CRACKED & CRACKED CONCRETE, METHACRYLATE FOR HIGH LOADS MAKALU

	MAKALU	
410 ml	5°C to 30°C	WCF-EASF-400
410 ml	15°C to 40°C	WCF-EASF-E-400*
410 ml	0°C to 20°C	WCF-EASF-C-400*

*product available on request

92

MAKALU - Epoxy Acrylate injection anchors - FOR HEAVY AND MEDIUM LOADS

WCF-EASF / WCF-EASF-E WCF-EASF-C

Epoxy Acrylate two-component (10:1 ratio) is universal bonded anchoring system approved for use in cracked & uncracked concrete in anchorages subject to static and quasi-static load and seismic actions in category C1, and also in masonry. For professional use in heavy and medium duty applications.

C1 (only for three rod M10-M24)	aded ETA-20/0618 - for installation of threaded rods into masonry substrate ETA-15/0703 - for PIR calculations in accordance with EC2 EN 1992-1-1 ETA-15/0702 - for threaded rods and rebars calculations according to EN-1992-4:2018							
	SUBSTRATES							
L								
Cracked a	nd uncracked concrete (option 1) C2O/25 to C5O/60. · Masonry substrate. Reinforced and non-reinforced concrete. Iry, wet concrete and flooded holes (Cat 2). alled rebar connections - calculation in accordance with EC2 EN 1992-1-1. Ingth class of concrete from C12/15 to C5O/60							
INSTALLATION Temperature Range	WCF-EASF-410 - for normal installation conditions: 5°C to 30°C WCF-EASF-E-410 - for summer (tropical) installation conditions: 15°C to 40°C WCF-EASF-C-410 - for winter installation conditions: 0°C to 20°C (not approved for PIR connections).							
CARTRIDGE SIZE	410 ml							
APPROVED Steel Elements	 Threaded rods M8-M30 made of galvanized steel grades: 4.6, 5.8, 8.8, 10.9; Threaded rods M8-M30 made of stainless steel grades: A4-70, A4-80, A2-70; Threaded rods M8-M30 made of HCR steel: 1.4529 and 1.4565; Galvanized or hot-dip galvanized rods and thermodiffusion; Rebars: Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32, grade: B,C; Rebars (post installed in accordance with TR023/EC2): Ø8, Ø10, Ø12, Ø14, Ø16, Ø20, Ø25, class: B, C; 							
APPLICATIONS	 Anchoring of steel constructions to concrete structural components Anchoring of base plates, brackets, consoles in high/medium load applications Strengthening and reinforcement of concrete members in existing superstructure (old buildings restoration, bridges renovation, etc.) Wide range of post-installed rebar connections including anchorage and overlap joint applications (e.g. slab to slab at support, overlap joint at a foundation of column or wall, etc.) Design method according to EN 1992-4:2018 and EC2 EN 1992-1-1 							

SEISMIC APPROVAL C1

Anchors have been tested for seismic loads, and thus are approved for use in applications in seismically active areas. Seismic approval allows to design reliable fastenings with increased level of safety.

HIGH LOAD-BEARING PARAMETERS

Being free of styrene is well suited and safe for use indoors and in confined spaces.

STYRENE-FREE

Being free of styrene is well suited and safe for use indoors and in confined spaces.

INSTALLATION IN CRACKED CONCRETE

Approved for fastening threaded rods in tension zone of reinforced concrete member. Tension zone, also called cracked zone might occur in all main structural concrete members e.g. beams , slabs, columns.

MAKALU (WCF-EASF / WCF-EASF-E / WCF-EASF-C) - FOR HEAVY AND MEDIUM LOADS (THREADED RODS)

TABLE 1. SELECTION TABLE

	Code	[°C]	Pcs.
	WCF-EASF-410	5 to 30	12
410 ml	WCF-EASF-E-410*	15 to 40	12
	WCF-EASF-C-410*	0 to 20	12

*product available on request

TABLE 2. INSTALLATION PARAMETERS - THREADED RODS

	Decemptore			THREADED ROD SIZE									
	Faiallieleis			M8	M10	M12	M16	M20	M24	M27	M30		
Threaded r	od diameter	d	[mm]	8	10	12	16	20	24	27	30		
Hole diameter d ₀ [mm] 10				12	14	18	22	26	30	35			
E + _	Min. embedment depth	h _{ef,min}	[mm]	64	80	96	128	160	192	216	240		
nimur dmen 1 = 8d	Min. hole depth	h _{0,min}	[mm]	69	85	101	133	165	197	221	245		
or min depth	Min. edge distance	C _{min}	[mm]	35	40	50	65	80	96	110	120		
5 9 0	Min. spacing	S _{min}	[mm]	35	40	50	65	80	96	110	120		
mum oring = 20d	Max. embedment depth	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600		
Maxi anch depth	Max. hole depth	h _{0,max}	[mm]	165	205	245	325	405	485	545	605		
Min. base n	naterial thickness	h_{min} [mm] h_{ef} +30 mm \geq 100 mm h_{ef} +2*d ₀			2*d ₀								
Installation	torque	T _{inst}	[Nm]	10 20 40 80 150 200 24			240	275					

TABLE 3. CURING TIME

Substrate temp [°C]	Resin type	0 to 5	5 to 10	10 to 15	15 to 20	20 to 25	25 to 30	30 to 35	35 to 40
Max. working time	EASF	-	10	8	6	5	4	-	-
	EASF-E	-	-	-	15	10	7,5	5	3,5
[[[]]]	EASF-C	10	5	5	5	1,7*	-	-	-
Minimum curing time [min.]	EASF	-	145	85	75	50	40	-	-
	EASF-E	-	-	-	300	145	85	50	40
	EASF-C	75	50	50	50	20*	-	-	-

* applies only to the temperature of + 20 ° C

MAKALU (WCF-EASF / WCF-EASF-E / WCF-EASF-C) - FOR HEAVY AND MEDIUM LOADS (REBARS ACCORDING TO THE TRO29 STANDARD)

TABLE 1. SELECTION TABLE

KLIMA

FASTENER TECHNOLOGIES

	Code	[°C]	Pcs.
	WCF-EASF-410	5 to 30	12
410ml	WCF-EASF-E-410*	15 to 40	12
	WCF-EASF-C-410*	0 to 20	12

*product available on request

TABLE 2. INSTALLATION PARAMETERS - REBARS ACCORDING TO THE EN-1992-4:2018

s / s_{min}

C / C_{min}

	Parameters			THREADED ROD SIZE								
	i aranotors			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32		
Rebar diar	neter	[mm]	8	10	12	16	20	25	32			
Hole diam	eter	d ₀	[mm]	12	14	16	20	25	32	40		
E+	Min. embedment depth	h _{ef,min}	[mm]	64	80	96	128	160	200	256		
nimur dmen 1 = 8d	Min. hole depth	h _{o,min}	[mm]	69	85	101	133	165	205	261		
or mi smber deptf	Min. edge distance	C _{min}	[mm]	35	40	50	65	80	100	130		
ш. U	Min. spacing	S _{min}	[mm]	35	40	50	65	80	100	130		
mum dment = 20d	Max. embedment depth	h _{ef,max}	[mm]	160	200	240	320	400	500	640		
Maxi embe depth	Max. hole depth	h _{o,max}	[mm]	165	205	245	325	405	505	645		
Min. base	material thickness	h _{min}	[mm]		h _{_e} +30 mm	ı ≥ 100 mm			h _{ef} +2*d			

TABLE 3. CURING TIME

Substrate temp [°C]	Resin type	0 to 5	5 to 10	10 to 15	15 to 20	20 to 25	25 to 30	30 to 35	35 to 40
Max. working time	EASF	-	10	8	6	5	4	-	-
	EASF-E	-	-	-	15	10	7,5	5	3,5
[11111.]	EASF-C	10	5	5	5	1,7*	-	-	-
Minimum	EASF	-	145	85	75	50	40	-	-
time [min.]	EASF-E	-	-	-	300	145	85	50	40
	EASF-C	75	50	50	50	20*	-	-	-

* applies only to the temperature of + 20 ° C

MAKALU (WCF-EASF / WCF-EASF-E / WCF-EASF-C) - FOR HEAVY AND MEDIUM LOADS (POST-INSTALLED REBAR CONNECTION)

TABLE 1. SELECTION TABLE

	Code	[°C]	Pcs.
410 ml	WCF-EASF-410	5 to 30	12
	WCF-EASF-E-410*	15 to 40	12

*product available on request

TABLE 2. INSTALLATION PARAMETERS - POST INSTALL REBAR CONNECTIONS

Decometers	THREADED ROD SIZE								
raidilleteis			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25
Rebar diameter	d	[mm]	8	10	12	14	16	20	25
Hole diameter	d ₀	[mm]	12	14	16	18	20	25	32
Min. anchorage length - C20/25	l _{b,min}	[mm]	113	142	170	198	227	284	354
Min. anchorage length - C50/60	l _{b,min}	[mm]	100	100	120	140	160	200	272
Minimum overlap length	l _{0,min}	[mm]	200	200	200	210	240	300	375
Max. installation length	l max	[mm]	400	500	600	700	800	1000	1000

Values have been calculated for good bond conditions and $a_{\rm g}{=}1,0$ Minimum anchorage length for PIR applications: I_{\rm bmin}{=}max(0,3^{*}I_{\rm brqd};10^{*}d;100 mm)

Minimum overlap length for PIR applications: I_{0,min}=max(0,3^*\alpha_6^*)_{brqd}:15^*d;200 mm)

TABLE 3. CURING TIME - POST INSTALL REBAR CONNECTIONS

Substrate temp [°C]	Resin type	5 to 10	10 to 15	15 to 20	20 to 25	25 to 30	30 to 35	35 to 40
Max. working time	WCF-EASF-410	10	8	6	5	4	-	-
[min.]	WCF-EASF-E-410	-	-	15	10	7	5	3
Minimum curing time	WCF-EASF-410	145	85	75	50	40	-	-
[min.]	WCF-EASF-E-410	-	-	300	145	85	50	40

MAKALU (WCF-EASF / WCF-EASF-E / WCF-EASF-C) - FOR HEAVY AND MEDIUM LOADS (THREADED RODS - MASONRY)

TABLE 1. SELECTION TABLE

KLIMA

FASTENER TECHNOLOGIES

	Code	[°C]	pcs.
410ml	WCF-EASF-410	5 to 30	12
	WCF-EASF-E-410	15 to 40	12
	WCF-EASF-C-410	0 to 20	12

TABLE 2.INSTALLATION PARAMETERS - THREADED RODS - MASONRY

Parameters	THREADED RODS							
Substrate			Solid masonry				Hollow masonry	
Threaded rod diameter	d	[mm]	M8	M10	M12	M8	M10	M12
Sleeve length	l _s	[mm]	-	-	-	85	85	85
Sleeve diameter	ds	[mm]	-	-	-	16	16	20
Hole diameter	d	[mm]	16	16	20	16	16	20
Depth of the drill hole	h	[mm]			90			
Effective anchorage depth	h _{ef}	[mm]			85			
Diameter of clearance hole in the fixture	d _{fs}	[mm]	9 12 14 9 12 14					14
Installation torque	T _{inst ≤}	[Nm]	2					

TABLE 3. CURING TIME

Substrate temp [°C]	Resin type	0 to 5	5 to 10	10 to 15	15 to 20	20 to 25	25 to 30	30 to 35	35 to 40
Max working time	EASF	-	10	8	6	5	4	-	-
Imidat. Working unite	EASF-E	-	-	-	15	10	7,5	5	3,5
LITIIII.J	EASF-C	10	5	5	5	1,7*	-	-	-
Minimum ouring time	EASF	-	145	85	75	50	40	-	-
	EASF-E	-	-	-	300	145	85	50	40
[rriin.]	EASF-C	75	50	50	50	20*	-	-	-

 * applies only to the temperature of + 20 $^{\circ}\mathrm{C}$

Reinforcement system for strengthening external concrete facade layer of communist-era prefabricated panel-system buildings

In response to the problem of reinforcing the external concrete facade layer of communist-era prefabricated panel-system buildings KLIMAS company has developed an economical and easy to install strengthening system, which maintain high performance properties. The estimated cost of the WK RENO reinforcement system (not considering load-bearing capacity of existing panel anchors) is about 20-25 % of the price of External Thermal Insulation System , which considering entire thermal modernization works is not a big expense , taking into account also possible additional costs that may occur in the event of existing panel anchors failure after thermal modernization of building.taking into account any costs that may occur during any malfunction after the thermal improvements.

The advantages of WK Reno system:

- Fast and easy installation installation process is not complicated and does not require the use of specialized tools and equipment.
- High load-bearing capacity system provides high load-bearing parameters and guarantee long-term safe service.
- No stress generated during installation by avoiding mechanical expansion, the WK RENO system does
 not introduce during installation stress into the substrate and can be installed close to each other and to
 substrate edges.
- ITB Technical Approval the quality of the system is confirmed with Technical Approval issued by the Institute of Building Technology in Poland.
- \cdot Threaded rods made of A2 or A4 stainless steel the highest anti-corrosion protection.

enstwo na h

- The WK RENO system ensures the stabilization of the entire facade by transferring self-weight load (shear force) and wind suction (tension force) into the supporting structure.
- One size drill diameter is used for drilling holes, which significantly speeds up and facilitates installation process.
- Simple installation also during additional thermal modernization of buildings (new ETICS system applied on old ETICS system) - no need to remove old ETICS in the area of WK RENO setting.

KLIMAS FASTENER TECHNOLOGIES

CHEMICAL ANCHORS

ELBRUS - Vinylester Injection Anchors - **FOR MEDIUM LOADS**

WCF-VESF / WCF-VESF-E

Vinylester two-component (10:1 ratio) is styrene-free bonded anchoring system approved for use in uncracked concrete with medium performance level. Suitable for both DIY applications and also professional use.

	SUBSTRATES
	 Uncracked concrete (option 7) C20/25 to C50/60. Reinforced and non-reinforced concrete. Dry and wet concrete and flooded holes (Cat 2).
INSTALLATION Temperature Range	WCF-VESF-300 - for normal installation conditions: 5°C to 30°C WCF-VESF-410 - for normal installation conditions: 5°C to 30°C WCF-VESF-E-300 - for summer (tropical) installation conditions: 10°C to 45°C WCF-VESF-E-410 - for summer (tropical) installation conditions: 10°C to 45°C
CARTRIDGE SIZE	WCF-VESF-300 - 300 ml WCF-VESF-410 - 410 ml WCF-VESF-E-300 - 300 ml WCF-VESF-E-410 - 410 ml
APPROVED Steel Elements	 Threaded rods M8-M24 made of galvanized steel grades: 5.8 8.8 10.9; Threaded rods M8-M24 made of stainless steel grades: A2-70, A4-70, A4-80; Threaded rods M8-M24 made of HCR steel: 1.4529, 1.4565; Galvanized, hot-dip galvanized or thermodiffusion galvanized bars;
APPLICATIONS	 Anchoring of base plates, brackets, consoles when load-bearing capacity is less critical. Fastenings in safety related non-structural applications e.g. handrails, guard rails, canopies, cantilevers etc. Design method according to EOTA Technical Report TR029 and EN-1992-4:2018.

STYRENE-FREE

Being free of styrene is well suited and safe for use indoors and in confined spaces.

NO STRESS IN SUBSTRATE DURING INSTALLATION

By avoiding mechanical expansion, they do not introduce during installation stress into the substrate and can be installed close to each other and to substrate edges.

FAST CURING

Resin is designed to cure fast so you can load the fastening point earlier.

ADDITIONAL MIXING NOZZLE FOR CARTRIDGE SIZE 300 ml

Two mixing nozzles for one cartridge allow to reuse remaining resin for next anchoring works. After finishing installation, leave used mixing nozzle on the cartridge until next anchoring job. Then remove used mixing nozzle with cured resin inside and screw a new one. The injection anchor is ready for another works.

	ELBRUS	
300 ml	5°C to 30°C	WCF-VESF-300
410 ml	5°C to 30°C	WCF-VESF-410
300 ml	10°C to 45°C	WCF-VESF-E-300
410 ml	10°C to 45°C	WCF-VESF-E-410

ELBRUS (WCF-VESF / WCF-VESF-E) - Vinylester Injection Anchors - FOR MEDIUM LOADS (THREADED RODS)

TABLE 1. SELECTION TABLE

	Code	[°C]	Pcs.
200ml	WCF-VESF-300	5 to 30	12
300mi	WCF-VESF-E-300*	10 to 45	12
410	WCF-VESF-410	5 to 30	12
4101111	WCF-VESF-E-410*	10 to 45	12

*product on order

TAB

produce on ore					+	/	d		
ABLE 2. INSTALLATION PARAMETERS - THREADED RODS									
	Daramatara					THREADE) ROD SIZE		
	Faidilieleis	M8	M10	M12	M16	M20	M24		
Threaded ro	od diameter	d	[mm]	8	10	12	16	20	24
Hole diamet	ter	d _o	[mm]	10	12	14	18	22	26
E ± _	Min. embedment depth	h _{ef,min}	[mm]	64	80	96	128	160	192
nimu dmen 1 = 8c	Min. hole depth	h _{0,min}	[mm]	69	85	101	133	165	197
nr min mber depth	Min. edge distance	C _{min}	[mm]	35	40	50	65	80	96
5 e c	Min. spacing	S _{min}	[mm]	35	40	50	65	80	96
± 7	Max. embedment depth	h _{ef.max}	[mm]	96	120	144	192	240	288
mum dmen = 12(Max. hole depth	h _{0,max}	[mm]	101	125	149	197	245	293
Maxi mber epth	Min. edge distance	C _{min}	[mm]	50	60	70	95	120	145
- 9 D	Min. spacing	S _{min}	[mm]	50	60	70	95	120	145
Min. substrate thickness h _{min} [mm]				h_{ef} +30 mm \ge 100 mm h_{ef} +2*d _n					
Installation	torque	T	[Nm]	10 20 40 80 150				200	

Substrate temp [°C]	Resin type	5	5 to 10	10	10 to 20	20 to 25	25 to 30	30	30 to 35	35 to 40	40 to 45	45
Max. working time	VESF	18	10	-	6	5	4	4	-	-	-	-
[min.]	VESF-E	-	-	30	15	10	7,5	-	5	3,5	2,5	2,5
Minimum curing	VESF	145	145	-	85	50	40	35	-	-	-	-
time [min.]	VESF-E	-	-	300	300	145	85	-	50	40	35	12

KLIMAS FASTENER TECHNOLOGIES

CHEMICAL ANCHORS

MONT BLANC								
300 ml	5°C to 30°C	WCF-PESF-300						
300 ml	10°C to 45°C	WCF-PESF-E-300*						
300 ml	-10°C to 30°C	WCF-PESF-C-300						
410 ml	10°C to 45°C	WCF-PESF-E-410*						

*product available on request

100

MONT BLANC - Polyester injection anchors - FOR LOW AND MEDIUM LOADS

WCF-PESF / WCF-PESF-E

Polyester is a low to medium performance level, cost effective, general purpose two-component (10:1 ratio), styrene-free chemical anchoring system with unsaturated polyester as chemical base, that has been formulated for anchoring in a wide variety of building materials. Ideal for standard DIY applications in uncracked concrete and masonry substrates.

ETA-16/0677 for threaded rods in masonry substrates calculations according to ETAG 029, Annex C, Design method A ETA-15/0745 for threaded rods calculations according to TR029 and EN-1992-4:2018

SUBSTRATES

	 Uncracked concrete (option 7) C20/25 to C50/60. Reinforced and non-reinforced concrete. Dry and wet concrete and flooded holes (Cat 2). Masonry substrate.
INSTALLATION Temperature Range	WCF-PESF-410 - for normal installation conditions: 5°C to 30°C WCF-PESF-E-410 - for summer (tropical) installation conditions: 10°C to 45°C WCF-PESF-C-410 - for winter installation conditions: -10°C to 30°C
CARTRIDGE SIZE	WCF-PESF-E-300 - 300 ml * WCF-PESF-410 - 410 ml WCF-PESF-E-410 - 410 ml
APPROVED Steel Elements	 Threaded rods M8-M24 made of galvanized steel grades: 5.8 8.8 10.9; Threaded rods M8-M24 made of stainless steel grades: A2-70, A4-70, A4-80; Threaded rods M8-M24 made of HCR steel: 1.4529, 1.4565; Galvanized, hot-dip galvanized or thermodiffusion galvanized bars;
APPLICATIONS	 Anchoring of base plates, brackets, consoles when load-bearing capacity is less critical. Fastenings in safety related non-structural applications e.g. handrails, guard rails, canopies, cantilevers, etc. DIY anchoring applications into wide variety of building materials e.g. sanitary ware, fencing, gates, boilers, bicycle racks, awnings, etc. Design method according to EOTA Technical Report TR029, EN-1992-4:2018 and ETAG 029/Annex C/Design method A.

*product available on request

STYRENE-FREE

Being free of styrene is well suited and safe for use indoors and in confined spaces.

NO STRESS IN SUBSTRATE DURING INSTALLATION

By avoiding mechanical expansion, they do not introduce during installation stress into the substrate and can be installed close to each other and to substrate edges.

FAST CURING

Resin is designed to cure fast so you can load the fastening point earlier.

CONTENT 410 ml - COAXIAL CARTRIDGE

Increased volume - 410 ml for larger work scopes, the coaxial cartridge allows for easier portioning and allows for use of every cm³ of the product.

MONT BLANC (WCF-PESF / WCF-PESF-E / WCF-PESF-C) - Polyester injection anchors - FOR LOW AND MEDIUM LOADS (THREADED RODS - CONCRETE SUBSTRATE)

TABLE 1. SELECTION TABLE

	Code	[°C]	Pcs.
300ml	WCF-PESF-300	5 to 30	12
	WCF-PESF-E-300*	10 to 45	12
	WCF-PESF-C-300	-10 to 30	12
410ml	WCF-PESF-E-410*	10 to 45	12

*product available on request

TABLE 2. INSTALLATION PARAMETERS - THREADED RODS - CONCRETE SUBSTRATE

	Parameters	THREADED ROD SIZE								
	T di difficici S			M8	M10	M12	M16	M20	M24	
Threaded ro	d diameter	d	[mm]	8	10	12	16	20	24	
Hole diamet	er	d ₀	[mm]	10	12	14	18	22	26	
E + -	Min. embedment depth	h _{ef,min}	[mm]	64	80	96	128	160	192	
nimu dmen 1 = 80	Min. hole depth	h _o ,min	[mm]	69	85	101	133	165	197	
rr mir mbec lepth	Min. edge distance	C _{min}	[mm]	35	40	50	65	80	96	
5 e c	Min. spacing	S _{min}	[mm]	35	40	50	65	80	96	
ta	Max. embedment depth	h _{ef,max}	[mm]	96	120	144	192	240	288	
mum dmen = 12	Max. hole depth	h _{o,max}	[mm]	101	125	149	197	245	293	
Maxi mbec lepth	Min. edge distance	C _{min}	[mm]	50	60	70	95	120	145	
d ei	Min. spacing	S _{min}	[mm]	50	60	70	95	120	145	
Min. base material thickness h		h _{min}	[mm]	h _{ef} +30 mm ≥ 100 mm				h _{ef} +2*d ₀		
Installation	torque	T _{inst}	[Nm]	10	20	40	80	150	200	

TABLE 3. CURING TIME

Substrate temp [°C]	Resin type	-10 to -5	-5 to 5	5	5 to 10	10	10 to 20	20 to 25	25 to 30	30	30 to 35	35 to 40	40 to 45	45
Working time	PESF	-	-	18	10	-	6	5	4	4	-	-	-	-
	PESF-E	-	-	-	-	30	15	10	7,5	-	5	3,5	2,5	2,5
[[[[]]]]	PESF-C	5	5	-	3,5	-	2	1,5	1	1	-	-	-	-
Minimum curing time [min.]	PESF	-	-	145	145	-	85	50	40	35	-	-	-	-
	PESF-E	-	-	-	-	300	300	145	85	-	50	40	35	12
	PESF-C	240	125	-	60	-	40	20	15	10	-	-	-	-

MONT BLANC (WCF-PESF / WCF-PESF-E / WCF-PESF-C) - Polyester injection anchors - FOR LOW AND MEDIUM LOADS (THREADED RODS - MASONRY)

TABLE 1. SELECTION TABLE

KLIMA

FASTENER TECHNOLOGIES

	Code	[°C]	Pcs.
	WCF-PESF-300	5 to 30	12
300 ml	WCF-PESF-E-300*	10 to 45	12
	WCF-PESF-C-300	-10 to 30	12

*product available on request

TABLE 2.INSTALLATION PARAMETERS - THREADED RODS - MASONRY

Parameters	THREADED RODS								
Substrate	F	Full ceramic brick	(S	Hollow bricks					
Threaded rod diameter	d	[mm]	M8	M10	M12	M8	M10	M12	
Sleeve length	I,	[mm]	-	-	-	85	85	85	
Sleeve diameter	d _s	[mm]	-	-	-	15	15	20	
Hole diameter	d ₀	[mm]	15	15	20	15	15	20	
Depth of the drill hole	h _o	[mm]			9	0			
Effective anchorage depth	h _{ef}	[mm]			8	5			
Diameter of clearance hole in the fixture	d _{fs}	[mm]	9	12	14	9	12	14	
Installation torque	T _{inst ≤}	[Nm]		2					

TABLE 3. CURING TIME

Substrate temp [°C]	Resin type	-10 to -5	-5 to 5	5	5 to 10	10	10 to 20	20 to 25	25 to 30	30	30 to 35	35 to 40	40 to 45	45
May working time	PESF	-	-	18	10	-	6	5	4	4	-	-	-	-
Iviax. WUIKIIIy UITIE	PESF-E	-	-	-	-	30	15	10	7,5	-	5	3,5	2,5	2,5
	PESF-C	5	5	-	3,5	-	2	1,5	1	1	-	-	-	-
Minimum curing time [min.]	PESF	-	-	145	145	-	85	50	40	35	-	-	-	-
	PESF-E	-	-	-	-	300	300	145	85	-	50	40	35	12
	PESF-C	240	125	-	60	-	40	20	15	10	-	-	-	-

Anchor rods for injection anchors

KPG KPGA2

FOR USE WITH Injection Anchors	 WCF-PESF-300, WCF-PESF-E-300, WCF-PESF-C-300, WCF-PESF-E-410 WCF-EASF-410, WCF-EASF-E-410, WCF-EASF-C-410 WCF-XS-410, WCF-XS-E-410, WCF-XS-C-410 WCF-VESF-300, WCF-VESF-E-300, WCF-VESF-410, WCF-VESF-E-410 WCF-E3-585
SUBSTRATE	Reinforced and non-reinforced concrete, solid brick, hollow brick, perforated brick, lightweight concrete blocks, etc.
CORROSION Protection	 Galvanized Stainless Steel A2

SELECTION TABLE

	Product code Class 5.8	d _w x L _w [mm]	Hole diameter (installation into con- crete and solid masonry substrate) [mm]	Unit pack quantity [pcs.]
	KPG-M08	M8 x 110	10	10
Galvanized	KPG-M10	M10 x 130	12	10
	KPG-M12	M12 x 160	14	10
	KPG-M16	M16 x 190	18	10
	KPG-M20	M20 x 260	22	10
	KPG-M24	M24 x 300	26	5
	KPGA2-M08*	M8 x 110	10	10
	KPGA2-M10*	M10 x 130	12	10
A2 - Stainless	KPGA2-M12*	M12 x 160	14	10
steel	KPGA2-M16*	M16 x 190	18	10
	KPGA2-M20*	M20 x 260	22	10
	KPGA2-M24*	M24 x 300	26	5

*product available on request

Threaded rods for injection anchors

PGO / PGO5/ PGO8 PGOA2 / PGOA4

Threaded rods allow wide range of anchoring applications, in combination with expansion elements e.g. installation of wire hanging systems or in combination with resin act as embedded metal part placed into pre-drilled hole in base material

FOR USE WITH Injection Anchors	WCF-PESF-300, WCF-PESF-E-300, WCF-PESF-C-300, WCF-PESF-E-410 WCF-EASF-410, WCF-EASF-E-410, WCF-EASF-C-410 WCF-XS-410, WCF-XS-E-410, WCF-XS-C-410 WCF-VESF-300, WCF-VESF-E-300, WCF-VESF-410, WCF-VESF-E-410 WCF-E3-585
SUBSTRATE	Reinforced and non-reinforced concrete, solid brick, hollow brick, perforated brick, lightweight concrete blocks, etc.

L,

SELECTION TABLE

			Product code					Hole diameter	llnit nack
	Galvanized	Galvanized	Galvanized	A2 - Stainless	A4 - Stainless		d _w x L _w [mm]	concrete and solid masonry substrate)	quantity
	Grade 4.6/4.8	Grade 5.8	Grade 8.8	STEEI	STEEI			[mm]	-, -
0	PGO-081000	PG05-081000	PG08-081000	PG0A2M8-100*	PG0A4M8-100*		8x1000	10	1
MO	PG0-082000	-	-	-	-		8x2000	10	1
10	PGO-101000	PG05-101000	PG08-101000	PG0A2M10-100*	PG0A4M10-100*		10x1000	12	1
MIU	PG0-102000	-	-	-	-		10x2000	12	1
19	PG0-121000	PG05-121000	PG08-121000	PG0A2M12-100*	PG0A4M12-100*	Threaded rods	12x1000	14	1
MIZ	PG0-122000	-	-	-	-	with	12x2000	14	1
16	PGO-161000	PG05-161000	PG08-161000	PG0A2M16-100*	PG0A4M16-100*	different coatings	16x1000	18	1
мю	PGO-162000	-	-	-	-	or	16x2000	18	1
	PG0-201000	PG05-201000	PG08-201000	PG0A2M20-100*	PG0A4M20-100*	UI	20x1000	22	1
MZU	PG0-202000	-	-	-	-	different materials	20x2000	22	1
94	PG0-241000	PG05-241000	PG08-241000	PG0A2M24-100*	PG0A4M24-100*	available on	24x1000	26	1
M Z 4	PG0-242000	-	-	-	-	request	24x2000	26	1
" 97	-	-	PG08-271000*	-	-		27x1000	30	1
WZ /	-	-	1 000 27 1000	-	-		L/ X1000		1
м30	-		PG08-301000*				30x1000	35	1

*product available on request

Hexagonal nuts - DIN 934

Nuts for use with metric screws and metric rods.

COMPATIBLE WITH THREADED RODS

Due to the fact that the nut is made in accordance with DIN 934, it is compatible with all rods having appropriate diameter of metric thread.

SELECTION TABLE

	Pr	oduct code					
Galvanized	ka	Galvanized	ka		s x m [mm]	М	
Class 5	ng ng	Class 8	- Ng				
NM-08	4	NM8-08	5		6.5 x 13	8	
NM-10	4	NM8-10	5		8 x 17	10	
NM-12	3	NM8-12	5	Nute with different coatings	10 x 19	12	
NM-16	3	NM8-16	5	ar different meteriale queilable	13 x 24	16	
NM-20	3	NM8-20	5	or uniterent materials available	16 x 30	20	
NM-24	3	NM8-24	5	on request	19 x 36	24	
-	-	NM8-27	5		22 x 41	27	
-	-	NM8-30	5		25 x 46	30	

Washers DIN 125A / ISO 7089

200HV grade washers for use with: - screws of classes A and B and grades of up to 8.8, hexagonal nut of class A and B and the class of up to 8 as well as with hardened screws.

Product co	ode			
Galvanized	inized kg ss 8	d x D [mm]	h [mm]	
Class 8				
PON-08	4	Washers with different coatings or different materials available on request	8.4 x 16	1.6
PON-10	4		10.5 x 20	2.0
PON-12	4		13 x 24	2.5
PON-16	4		17 x 30	3.0
PON-20	4		21 x 37	3.0
PON-24	4		25 x 44	4.0
PON-27	4		28 x 50	4.0
PON-30	4		31 x 56	4.0

Flat washers large DIN 9021A / ISO 7093-1

POD

200HV grade washers for use with: - screws of classes A and B and grades of up to 8.8, hexagonal nut of class A and B and the class of up to 8 as well as with hardened screws.

Product co	ode			_
Galvanized	alvanized kg Class 8	d x D [mm]	h [mm]	
Class 8				
POD-08	4	Washers with different coatings or different materials available on request	8.4 x 24	2.0
POD-10	4		10.5 x 30	2.5
POD-12	4		13 x 37	3.0
POD-16	4		17 x 50	3.0
POD-20	4		22 x 60	4.0
POD-24	4		26 x 72	5.0
POD-27	4		30 x 85	6.0
POD-30	4		33 x 92	6.0

Injection anchor dispensers DCF-300 / DCF-410 / DCF-585

Dispensers are used for resin injection into anchor holes. Dispenser number markings are in accordance with resin cartridge content markings.

FEATURES AND ADVANTAGES

- Simple and intuitive handling Ideal fit for compatible cartridges working principle same as in dispensers for silicones make these injection anchor dispensers simple and intuitive.
- Easier injection Special dispenser design allows for application without using much force to extrude the resin - compared to other commercially available dispensers.
- Long service life High quality materials used in dispenser production ensure long and no-failure operation.

FOR USE WITH INJECTION ANCHORS

- DCF-310: WCF-PESF-300, WCF-PESF-E-300, WCF-PESF-C-300, WCF-VESF-E-300, WCF-VESF-300
- DCF-410: WCF-EASF-410, WCF-EASF-E-410, WCF-EASF-C-410, WCF-XS-410, WCF-XS-E-410, WCF-XS-C-410, WCF-PESF-E-410, WCF-VE-SF-410, WCF-VESF-E-410
- · DCF-585: WCF-E3-585.

Metal mesh sleeve for hollow materials

TSM

Mesh sleeve is used for anchoring in masonry substrates with voids , such as hollow bricks, perforated bricks, hollow lightweight concrete blocks. Metal mesh sleeve is available in a length of 100 cm, which allows it to be used in drill hole with any depth. To prepare metal mesh sleeve for insertion into drill hole it is necessary to cut the sleeve to the appropriate length and to block its end to secure collection of resin inside the sleeve.

FEATURES AND ADVANTAGES

- Universality The 1m long metal mesh sleeves can be cut to meet individual needs depending on drill hole depth.
- Used in masonry with voids Special mesh design of the sleeve ensures, that resin evenly spreads through the perforations once threaded rod is inserted.

FOR USE WITH INJECTION ANCHORS

- WCF-PESF-300, WCF-PESF-E-300, WCF-PESF-C-300, WCF-PESF-E-410
- · WCF-EASF-410, WCF-EASF-E-410, WCF-EASF-C-410

	Product code	$d_k x L_k[mm]$	d _w [mm]	[pcs.]
Ø12	TSM-12	12 x 1000	8	1
Ø16	TSM-16	16 x 1000	10 - 12	1
Ø22	TSM-22	22 x 1000	16	1
Ø26	TSM-26	26 x 1000	20	1

Nylon mesh sleeves for fastening in hollow base materials

Installation in hollow base materials requires the use of mesh sleeves. TSN is a nylon mesh sleeve. Intended for standard installations at a depth of up to 130 mm.

FEATURES AND ADVANTAGES

- Proper setting of threaded rod The centering cap ensures, that threaded rod is guided centrically towards the end of sleeve and reduce spreading of resin in the direction of mouth of the hole.
- Reliability and durability of the installation NYLON has been used in manufacturing of the mesh sleeve it has stable mechanical properties for the temperature range of: - 40°C to + 200°C - it is resistant to UV and aggressive environments - it is resistant to aging and oxidation, it can be used outdoors - it is durable and flexible, increasing the anchor parameters - it has high fire resistance, it is hard to ignite and is self-extinguishing.
- Used in masonry with voids Special mesh design of the sleeve ensures , that resin evenly spreads through the perforations once threaded rod is inserted.

FOR USE WITH INJECTION ANCHORS

- WCF-PESF-300, WCF-PESF-C-300, WCF-PESF-E-300,
- WCF-PESF-E-410
- · WCF-EASF-410, WCF-EASF-C-410 , WCF-EASF-E-410

		Product code	d _k x L _k [mm]	d _w [mm]	[pcs.]
	Ø12	TSN-01	12 x 50	6 - 8	50
	CA10	TSN-02	16 x 85	10 - 12	20
	010	TSN-03	16 x 130	10 - 12	20
	Ø20	TSN-04	20 x 85	14 - 16	20

Mixing nozzle

The mixing nozzle has an inner thread allowing for installation on the resin cartridge mouth. Mixing nozzle has an internal helix mixer designed to ensure consistent mixing of resin components and to reduce start-up waste. Correct mixing is necessary to achieve expected proper performance level of the anchorage.

FEATURES AND ADVANTAGES

- · Universality One type of mixing nozzle for various resin types.
- · Extruding control Transparent plastic allows you to control the movement of resin in the mixer.

FOR USE WITH INJECTION ANCHORS

- WCF-EASF-410, WCF-EASF-E-410, WCF-EASF-C-410, WCF-XS-410, WCF-XS-E-410, WCF-XS-C-410, WCF-PESF-300, WCF-PESF-E-300, WCF-PESF-C-300, WCF-PESF-E-410, WCF-VESF-300, WCF-VESF-E-300, WCF-VESF-410, WCF-VESF-E-410.
- WCF-E3-585

Blow-out pump is an essential element of anchor installation. Correct hole cleaning from dust and debris enables to provide proper performance parameters of anchorage.

Code	pcs.
PCF	1

KLIMA

FASTENER TECHNOLOGIES

Hole cleaning brush

SCF

The brush is one of the basic tools required to properly prepare the installation hole. After blowing the dust out of the hole you should repeat the cleaning process at least 2 times, cleaning dust away from the surface of the hole using brush, then blowing the hole with compressed air or pump again. SCF brush could be utilised for standard anchoring applications with embedment depth limited to length of brush.

Min. hole diameter [mm]	Product code	pcs.
Ø10	SCF-13	1
Ø14	SCF-18	1
Ø22	SCF-28	1

Jane Constant
Deep hole cleaning brush SCF-H / SCF-E / SCF-B

The brush is one of the basic tools required to properly prepare the installation hole. After blowing the dust out of the hole you should repeat the cleaning process at least 2 times, cleaning dust away from the surface of the hole using brush, then blowing the hole with compressed air or pump again. Compatible connecting threads on each brush element offer versatility as installers can combine elements to reach required length according to drill hole depth.

Min. hole diameter [mm]	Product code	pcs.
Ø12	SCF-B-12	1
Ø14	SCF-B-14	1
Ø16	SCF-B-18	1
Ø18	SCF-B-22	1
Ø25	SCF-B-27	1
Ø32	SCF-B-35	1
Ø35	SCF-B-38	1
Ø40	SCF-B-43	1
V24U	30F-D-43	

Available on request

Product code	pcs.		
SCF-H	1		
Available on request			
Development and a			

Product code	pcs.
SCF-E	1

Available on request

SCF-H - Brush handle

SCF-E - Brush extension

Extension hose

The hose is used as a mixing nozzle extension for deep holes. Extension hose has to be cut to the required length.

Product code	For use with mixing nozzle	meters per unit pack
MCF-P	MCF	30

Extension tube

MCF-PK

Extension tube is used to extend the mixing nozzle to allow filling of deep drill holes. Enable reaching the bottom of the hole before starting injecting the resin.

Product code	For use with mixing nozzle	pcs.
MCF-PK	MCF	12

Resin stopper

Resin stopper is placed on the end of the extension hose previously installed on the mixing nozzle, which is already filled with properly mixed resin. Filling the drill hole can begin after inserting extension hose into the hole, when resin stopper will reach the bottom. The resin stopper ensures, that resin injected into the drilled hole is consistent and free of air voids and provides more accurate injection of estimated chemical resin volume simultaneously minimising wastage. Appropriate resin stoppers should be used depending on the diameter of the drilled hole. The resin stopper is reusable.

Min. hole diameter [mm]	Product code	pcs.
Ø20	TCF-18	1
Ø25	TCF-22	1
Ø32/35	TCF-30	1
Ø40	TCF-36	1

Available on request

110

KLIMAS FASTENER TECHNOLOGIES

The catalogue is for information purposes only and does not constitute a commercial offer. Technical data is collected with highest diligence KLIMAS products are continually developed, therefore we reserve the right to change the product offer and technical specifications. The colours presented are for reference only, RAL colour guide is binding for specification of colour. Pictures presented are for information purposes only. When designing and using our products, take into account technical rules, as well as building and safety regulations. Technical approvals for use in the building industry and European approvals can be downloaded from www.klimas.com

KLIMAS Sp. z o.o. ul. Wincentego Witosa 135/137, Kuźnica Kiedrzyńska 42-233 Mykanów, POLAND www.klimas.com

